Searches for mSuGRA and related SUSY at LEP

Klaus Desch University of Hamburg

on behalf of the LEP collaborations

Klaus Desch - Searches for mSuGRA and related SUSY at LEP - Boston 17/03/03

Why search for SUSY at LEP?

a posteriori reasoning:

• light Higgs boson:

SUSY prediction: $m_h \le m_z$ at tree level $m_h < 135 \text{ GeV}$ in MSSM \iff $m_h < 211 \text{ GeV} (95\%\text{CL}) \text{ from EW fit}$

could this be an accident???

How to search for the sparticles?

many different sparticles

many different production mechanisms

depend on many (~105) parameters (MSSM)

- ⇒ hopeless to perform a dedicated search for each configuration
- ⇒ strategy at LEP:
 - identify + classify topologies
 - perform searches as model-independent as possible
 - then use (possibly overlapping) subsets of the searches for the interpretation within a certain model We don't search for "mSuGRA", etc. !

"Classic" SUSY Search Strategy

- LSP pair production not (really) visible:
 ⇒ search for the NLSP, which may be a:
 - charged slepton
 - sneutrino (invisible, might be disturbing in decay patterns)
 - squark

 (typically too heavy → hadron collider, unless strongly mixed,
 ⇒ stop, sbottom)
 - chargino
 - heavier neutralinos
 - gluino (only higher order process in e+e-, → hadron collider)

The LEP2 data sample

e:

LEP combined sample: $\sim 2.6 \text{ fb}^{-1}$

All four experiments ADLO have performed the basic searches for sleptons, squarks, charginos and neutralinos

LEP SUSY Working Group: combination of the results

http://lepsusy.web.cern.ch/lepsusy/

Especially important for the highest energies: ECM>207.5 GeV (ADLO=35.2 pb-1)

• <u>Smuons</u>: almost model-independent cross section

- <u>Staus:</u> mixing (⇒ lighter stau can decouple from Z, reduced cross section)
- <u>Selectrons</u>: t-channel with neutralino exchange (⇔ model dependent, usually constructive interference)

Klaus Desch - Searches for mSuGRA and related SUSY at LEP - Boston 17/03/03

Signature: acoplanar lepton pairs

Main Background: $e^+e^- \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^-\overline{\nu}$

No mass reconstruction possible ⇒ use multi-variate technique to exploit kinematical differences between signal and background (depends on assumed slepton mass)

A typical smuon candidate (and background) event:

Numbers of observed events and expected background events:

any significant excess or deficit ? Calculate confidence level for excess/deficit using likelihood ratio method

Note:

Selected events are correlated over wide areas in the plane

For a "true" signal, would expect significant excess over a wide area

> No significant excess ⇒ cross section upper limits

Klaus Desch - Searches for

Cross section limits:

- Selectrons: $\sim 10 80$ fb
- Smuons: ~10 50 fb
- Staus: ~40 150 fb

Except for the region with small (few GeV) mass difference

 $\Delta M = m_{\tilde{\ell}} - m_{\chi^0_1}$

Compare this again to the MSSM predicted cross sections

mass exclusion almost up to kinematic limit possible

Charged Sleptons: Mass Limits

Charged Sleptons: Mass Limits

Examples of Mass Lower Limits (@ 95% Confidence Level):

Channel	Comment	Neutralino Mass	Observed Slepton Mass Lower Limit	Expected Slepton Mass Lower Limit
Selectron	RR coupling	0 GeV 40 GeV	99.6 GeV 99.4 GeV	99.2 GeV 99.4 GeV
Smuon	RR coupling	0 GeV 40 GeV	94.9 GeV 96.5 GeV	91.4 GeV 94.7 GeV
Stau	Z decoupled	0 GeV 40 GeV	85.0 GeV 91.7 GeV	84.7 GeV 88.8 GeV
	RR coupling	0 GeV 40 GeV	85.9 GeV 92.5 GeV	85.8 GeV 89.6 GeV

Only very weakly model-dependent

Search for Sbottom/Stop

In most (GUT-related) models, squarks are heavier than sleptons and charginos, unless there is strong mixing between L and R states. Off-diagonal elements of mixing matrix are $\sim m(q) \Rightarrow 3^{rd}$ family LEP experiments concentrate on search for stop and sbottom

Klaus Desch - Searches for mSuGRA and related SUSY at LEP - Boston 17/03/03

Search for Sbottom/Stop

ALEPH example of a multi-jet + missing energy event:

Search for Sbottom/Stop

To make it short: no excess found in any of the 4 experiments Exclusion (partially complementary to Tevatron):

Example: $\tilde{b} \rightarrow b \chi_1^0$

Mass limits (ADLO)

Channel	M(squark) - M(LSP)	Observed mass limit no mixing	Observed mass limit max mixing
	20 GeV	100 GeV	98 GeV
stop -> c chi	40 GeV	98 GeV	95 GeV
	60 GeV	98 GeV	95 GeV
	20 GeV	99 GeV	95 GeV
sbottom -> b chi	40 GeV	99 GeV	95 GeV
	60 GeV	99 GeV	94 GeV
	20 GeV	99 GeV	96 GeV
stop -> b I snu	40 GeV	99 GeV	97 GeV

ALEPH: search for stable stop-hadrons: absolute limit on m(stop) > 63 GeV independent of ΔM

Run:event 8138:17789 Ctrk(N= 26 Sump= 70.2) Ecal(N= 54 SumE= 71.5) Ebeam 90.88 Vtx (-0.03, 0.10,-0.28) Heal(N=10 SumE= 8.0) Muon(N= 1)

(but also compatible with WW)

 large cross sections up to kinematical limit

- universal cross section in Higgsino region
- model-dependency due to destructive interference with t-channel sneutrino exchange

Signal topolgy and SM backgrounds depend strongly on the mass difference $\Delta M = M(\chi^{\pm}) - M(\chi^{0})$

Large ΔM : only moderate missing energy Small ΔM : little visible energy Very Small ΔM : lifetime effects $\left. \begin{array}{c} \\ \\ \end{array} \right\}$ "Deep Higgsino region $\mu < < M2''$

Example: input variables to hadronic chargino search in OPAL at $\sqrt{s} = 206$ GeV

- Search for a wide grid in $M(\chi)$ and ΔM and at many different \sqrt{s} is technically non-trivial
- Need (in principle) many millions of MC events
- Development of sophisticated interpolation techniques
- Increased sensitivity through modern selection techniques (likelihoods)

Charginos: cross section limits

Single experiments:

ADLO combination for highest energies:

 $\sigma < 100 \text{ fb}$ for large part of mass plane

$\sigma < 1 \ pb$

even close to kinematical limit (104 GeV)

Chargino Mass Limit

Mass limit for pure Only somewhat weakened for $\chi^{\pm} \rightarrow W^* \chi_1^0$ decays low ΔM (see talk by A.Perrotta) 105 tanβ=2 u= -200 GeV ADLO ADLO √s > 206.5 GeV 104 Higgsino (GeV $\mathsf{M}\chi^+_1$ (GeV **Expected Limit** 103 102 101 100 10Excluded at 95% C.L. 90 80 1007099 600 800 200 400 1000 $M\tilde{\chi}_{1}^{+}(GeV)$ $M\tilde{v}$ (GeV) M > 103 GeV M > 92.4 GeV

Interpretation of the Results in Specific Models

None of the LEP2 searches for sparticles showed any significant excess ⇒ exclusion limits in the parameter space of constrained SUSY models

"Classic" SUSY searches are interpreted within:

μ

M,

<u>CMSSM</u>
"LEP"
Constrained
MSSM
(6 parameters)

m _{1/2}	Gaugino mass at GUT scale
m _o	Scalar mass at GUT scale
tanβ	Ratio of Higgs field v.e.v.'s
A ₀	Common trilinear coupling
sign(µ)	

mSugra (4.5 parameters)

Higgsino mixing parameter CP odd Higgs mass

Exclusion in the m0-m1/2 plane:

Chargino exlcusion weakly $\tan\beta$ dependent but "light sneutrino" corridor \Rightarrow (partially) covered by slepton searches

CMSSM LSP mass limit

LSP limit (in CMSSM) set by slepton searches in the corridor for large tan β

Higgs tan β exclusion depends on top mass (but not so critical for CMSSM LSP limit)

CMSSM Stau mixing

Klaus Desch - Searches for mSuGRA and related SUSY at LEP - Boston 17/03/03

CMSSM Stau mixing

Preliminary ALEPH result:

Stau mixing effects do not lower the CMSSM LSP limit for tanβ>2

mSuGRA Interpretation

Impact of Higgs searches becomes larger (Higgs sector coupled to sparticle sector in mSuGRA) Exclusion in m0-m1/2 plane:

Klaus Desch - Searches for mSuGRA and related SUSY at LEP - Boston 17/03/03

mSuGRA LSP Mass Limit

M(LSP) (any A0, mtop=175) 50.3 GeV

roughly: 1 GeV less per 1 GeV larger mtop

Large tanβ: limit set by Charginos searches

Small tanβ: limit set by Higgs searches

<u>Epilogue</u>

SUGRA 20

SUGRA 25

PDG 2002:

Citation: K. Hagiwara et al. (Particle Data Group), Phys. Rev. D 66, 010001 (2002) (URL: http://pdg.ibl.gov)

Table 1: Lower limits on supersymmetric particle masses. 'GMSB' refers to models with gauge-mediated supersymmetry breaking, and 'RPV' refers to models allowing R-parity violation.

25 years of SUGRA will hopefully be a real celebration!

...and then the real work (+fun) begins: How is SUSY broken: LHC + LC can find out

Special thanks to

- G. Ganis
- K. Jakobs
- R. McPherson
- L. Pape
- C. Rembser
- G. Sguazzoni