

Recent results from OPAL

Richard Hawkings (CERN)

LEP physics jamboree, 6/3/03

- An overview of some recent OPAL results:
 - Electroweak physics: τ decays
 - B-physics B semileptonic decays
 - Final state interactions: Bose-Einstein and colour reconnection at LEP1
 - QCD studies at LEP2
 - Two photon physics: di-jet studies
 - OPAL long term plans and 'archiving'

See http://opal.web.cern.ch/.Opal/PPwelcome.html for more details ...

$\tau \rightarrow \mu$ branching ratio

- Precise BR($\tau \rightarrow \mu$) from all LEP1 data
 - Select τ⁺τ⁻ events
 - 97k events; 1.1±0.2% background
 - Select τ→μ candidates
 - Selection based mainly on tracking and muon chambers
 - 31k candidates, 3.0±0.3% background
 - Key is good understanding and control of backgrounds:
 - Dedicated selections to enhance and study particular backgrounds
 - Independent selection of τ→μ events based on calorimeter information
 - E.g. study hadron punch-through by looking at calorimeter response:
- Result from full OPAL data sample:
 - BR($\tau \rightarrow \mu$)=0.1734 ± 0.0009 ± 0.0006

Testing lepton universality

Ratio of $\tau \rightarrow \mu$ and $\tau \rightarrow e$ branching ratios tests equality of g_e and g_u :

$$(g_m/g_e) = 1.0005 \pm 0.0044$$

Include μ and τ lifetimes and masses to test equality of g_e and g_{τ} :

$$(g_t/g_e) = 1.0031 \pm 0.0048$$

- Alternatively, assume lepton universality
 - Relation between BR and lifetime ...
- Michel parameter η:
 - Structure of leptonic decay spectrum; depends on $\tau \rightarrow \mu$ and $\tau \rightarrow e$ BRs

$$h = 0.004 \pm 0.037$$

Can be used to limit scalar couplings in τ decay – limit on H⁺ mass in MSSM:

$$m_{H} > 1.28 \tan \beta$$
 at 95% CL

Complementary to constraint from $B \rightarrow tX$

Measurement of B→D**Iv branching ratio

Spectroscopy of D mesons:

- B semileptonic decays can involve all these states: B→(D,D*,D**) Iv
- Contribution of D** states is particularly interesting:
 - Sum of exclusive BR < inclusive BR
 - Irreducible background to LEP measurements of |V_{cb}|

Reconstruction of decay chain:

■ B
$$\rightarrow$$
D**0IvX
D**0 \rightarrow D*+ π -
$$D^*+\rightarrow D^0\pi^+$$

$$D^0\rightarrow K^-\pi^+ \text{ or } K^-\pi^+\pi^-\pi^+$$

- Look for narrow states D₁⁰ and D₂^{*0}
 - Branching ratios are small, expect only a handful of events
 - Five or seven tracks to reconstruct in the final state – a challenge

Looking for the D₁ and D₂

Events/20 Me

- Analysis strategy:
 - Identify lepton from B decay
 - Reconstruct D⁰ in Kπ and K3π modes
 - Add 'slow' π for D*, kinematic fit
 - Look for π from D^{**} decay
 - Require appropriate vertex topology
 - Examine D*π mass spectrum:

$$\Delta m^{**} = m(D^*\pi) - m_{D^*} - m_{\pi}$$

- Background from mass sidebands and wrong sign D*+π+ Δm** distribution
- See signal from D₁⁰ in both modes:
 - BR(b→B)(B→D₁⁰Iv)(D₁⁰→D*+π⁻) = (2.64 ± 0.79 ± 0.39) × 10⁻³
- No evidence of D₂*0 mass peak
 - BR(b→B)(B→D₂*0|v)(D₂*0→D*+ π -) < 1.4 × 10⁻³ at 95% CL

Angular information

- Angular decay distributions:
 - For D₁ (1+state): $\frac{1}{4}(1+3\cos^2\alpha)$
 - For D_2^* (2+ state): $\frac{3}{4}\sin^2\alpha$
 - a = angle between the two pions in the D* rest frame
 - Expect D₁ signal to be concentrated at high |cosα|
 - It is... no sign of of D₁ or D₂* signals at low |cosa|
 - Supports assignment of observed state to D₁
- Results agree with other expts.
 - Substantial D₁ contribution
 - D₂* contribution is small not expected by HQET
 - Substantial room for broad states (D₀* and D₁*) and non-resonant contributions to B→D*πlv

Bose-Einstein correlations in π^0 pairs

- Many BEC studies in Z⁰ decays
 - So far, only a few studies of π^0 pairs
 - String model predicts larger strength and smaller source radius for π^0 pairs cf. π^{\pm}
 - Cluster model predicts no difference.
 - Neither model accounts for BEC connecting 5000 pions from different strong decays
- Experimental analysis:
 - Define correlation function:

$$C(Q)=r(Q)/r_0(Q)$$
, where $Q^2=-(p_1-p_2)^2$

- ρ is phase space density in data
- ρ_0 is reference distribution without BEC
- BEC gives an increase in C(Q) as Q→0
- Take reference distribution ρ₀ from pairs of π⁰ from different events
 - Model detector inefficiency, independent of Monte Carlo simulation

- π^0 from photon pairs in barrel ECAL
 - Purity around 70% for 100-170 MeV
 - Combine π^0 to form pairs for BEC analysis 60% purity for events with exactly 2 π^0 candidates

Bose-Einstein results

Correlation function fit:

$$C(Q) = N(1+1) \exp(-R^2Q^2)(1+\delta Q+\epsilon Q^2)$$

- After subtracting resonance background
- Clear BEC enhancement seen:
 - $l = 0.55 \pm 0.10 \pm 0.10$
 - $R = 0.59 \pm 0.08 \pm 0.05 \text{ fm}$
 - Main systematics from changing fit range
- Note results obtained for back-to-back two-jet events with $p_{\pi 0}>1$ GeV.
- Compare with LEP average for π[±]

$$R=0.74 \pm 0.01 \pm 0.14 \text{ fm}$$

... no significant difference

- But note:
 - Pions from strong decays dominate
 - BEC exist between strong decay products
 - Cannot test string/cluster predictions for R

Rapidity gaps and colour reconnection

Rapidity with respect to an axis:

$$y=\frac{1}{2}\ln((E+p_{||})/(E-p_{||})$$

- Rapidity gaps studied in ep and pp
 - Colour singlets, pomerons ?
- Can also arise from colour reconnection:

- Disconnected string segment in (b)
 - Gap between the isolated part and the rest of the event

- Look for rapidity gaps in Z→qqg
 - Select 3-jet events with exactly two b-tagged jets:

Define gluon jet 'scale' κ_{iet}

$$\kappa_{\text{jet}} = E_{\text{jet}} \sin(\theta_{\text{min}}/2)$$

 θ_{min} is angle to closest other jet

- Require $\kappa_{iet} > 8 \text{ GeV}$
- Select sample of 10k hard isolated jets from 10-35 GeV
 - Gluon jet purity around 94%

Colour Reconnection Models

- Two CR models considered:
 - Rathsmann-CR (in PYTHIA framework)
 - Adjustable CR-suppression parameter R₀=0.1 to describe rapidity gaps in ep and pp data
 - Ariadne-CR model (AR3 in Ariadne)
 - Compare with Jetset, Ariadne, Herwig
- Do these models describe Z⁰ data ?
 - Test event shape distributions:
 - Thrust, aplanarity, jet broadening, y₂₃, rapidity, p_{out}
 - Both give reasonable descriptions of Z⁰ data as good as their 'non-CR' counterparts
- Now look at the gluon jets in more detail...

Gluon jet selection

- Select gluon jets with rapidity gap
 - Examine particles assigned to jet
 - Smallest y satisfies y_{min}>1.7
 - ⇒ 391 events
 - Or largest difference $\Delta y_{max} > 1.7$
 - ⇒ 90 more events
- Jetset/Herwig (no CR) describe data
 - Rathsmann-CR model predicts excess of events with rapidity gap...
 - Similar result for Ariadne-CR model
- Going further structure of jets:
 - Isolated gluon system should be electrically neutral
 - Look at charged multiplicity n_{ch} and charge Q of 'leading' part of jet beyond rapidity gap

Properties beyond the rapidity gap

- Both CR models show large excesses for even n_{ch} and Q=0
 - The data clearly do not support this these models are disfavoured

Can the models be saved by retuning?

- Can we adjust parameters to:
 - Describe selected gluon jets
 - Remove Q=0 discrepancy
 - Maintain Z⁰ data description
- Rathsmann-CR model:
 - Raise parton shower cutoff Q₀ to 3.5 GeV, reduce Lund b for <n_{ch}>
 - Poor Z^0 c²: 2000 \rightarrow 5000
 - Raise L_{QCD} to 1.4 GeV
 - Impossible to describe <n_{ch}>
- Ariadne-CR model:
 - Change p_{T,min} and b for <n_{ch}>
 - Again, poor c²: 900→1900
- Both CR models are disfavoured...
 - Cannot describe all event properties
 - Does this help for CR in W events?

QCD studies at high energy

- Large energy range covered at LEP2:
 - Explore a basic QCD prediction:
 - Multiplicity difference between heavy and light flavour events (δ_{bl}=<n>_b-<n>_{uds}) is independent of √s
 - Naïve model predicts δ_{bl} decreases with increasing \sqrt{s}
- Select non-radiative qq events and measure multiplicity
 - Use flavour tagging to isolate samples enriched in uds and b events.
 - Unfold multiplicities for pure samples of each flavour:

$$< n>_1 = f_1^b < n>_b + f_1^c < n>_c + f_1^{uds} < n>_{uds}$$

$$< n>_2 = f_2^b < n>_b + f_2^c < n>_c + f_2^{uds} < n>_{uds}$$

$$< n>_3 = f_3^b < n>_b + f_3^c < n>_c + f_3^{uds} < n>_{uds}$$

Multiplicity in heavy and light events

- Multiplicities <n_i> in each sample:
 - Correct for biases introduced by flavour tagging procedure.
 - Correct for backgrounds (4f and radiative qqγ events)
- Sample composition f_ib,c,uds:
 - Evaluated from simulation
- Simulation gives a good description of OPAL data...
 - Systematics dominated by
 - Detector simulation (b-tagging)
 - Model dependence of corrections (PYTHIA vs HERWIG)

d_{bl} is independent of energy

- OPAL results show no dependence on energy √s.
 - Average over 130-208 GeV:
 d_{bl} = 3.44 ± 0.40 (stat) ± 0.89 (syst)
 - Compare with OPAL Z^0 measurement: $d_{bl} = 2.79 \pm 0.30$
 - Average of all experimental results:
 d_{hl} = 3.05 ± 0.19
- Comparison with theory predictions:
 - Naïve model clearly ruled out
 - MLLA calculation:

$$d_{bl}$$
 = 5.5 ± 0.8 (exp) ± 1.0 (higher orders)

- Other QCD upper limits: 3.7-4.1
- A challenge to theory to determine d_{bl} more precisely...

Two-photon physics: di-jet production

- Study of di-jet production in twophoton collisions
 - Full LEP2 dataset (189-209 GeV)
 - (earlier studies at 172-183 GeV)
 - Look at inclusive jet cross-sections as a function of E_t^{jet} , η^{jet} and $|\Delta \eta^{jet}|$
 - Contributions from different processes:

Want to separate the contributions:

$$x_{\gamma}^{\pm} = \Sigma_{\text{jets}} (E^{\text{jet}} \pm p_z^{\text{jet}}) / \Sigma_{\text{hfs}} (E^{\text{i}} \pm p_z^{\text{i}})$$

Sums over jets and hadrons in final state

- x_γ estimates the fraction of the photon's momentum entering the hard scattering
- Different regions in the $(x_{\gamma}^+, x_{\gamma}^-)$ plane populated by different processes:

1	mostly single resolved	mostly direct
	mostly double resolved	Mostly single resolved
0		

Inclusive di-jet cross-section

- Cross-section for different x, regions
 - Compare to NLO calculation (Klasen et al.) and to PYTHIA+SaS1D
 - Hadronisation corrections for NLO evaluated using PYTHIA & HERWIG
 - In full x_y range, good agreement
 - Dominated by direct processes for high E_t^{jet} values.
 - Similar good agreement for one x_y smaller than 0.75 (single resolved)
 - Conditions unique to LEP
 - Problems for both $x_y < 0.75$
 - Predictions are somewhat below the data...
 - In this region, multiple parton interactions (MIA) become important
 - Can we study them in more detail?

Separating the different contributions

- Look at cross-sections vs x_y for restricted E_t^{jet}: 7<E_t^{jet}<11 GeV</p>
 - Fair agreement for full x[±], range
 - Large hadronisation uncertainties for direct events, which have $x_{\gamma}=1$ at parton level, smeared out
 - Nice agreement for single resolved
 - LEP is unique in having 'clean' access to this region
 - NLO able to describe hadronic content of photon
 - Problems for both $x_y < 0.75$
 - NLO calculation and PYTHIA both underestimate cross-section
 - Note: PYTHIA MIA contribution is ~same size as part missing from NLO calculation ...
 - Some sensitivity to gluon density

OPAL is still very active

21 OPAL papers published in 2002:

 Similar to 2001 – still plenty of new results being finalised

- And there is more to come...
 - 67 ongoing analysis activties, most expected to lead to papers

- OPAL has 37 PhD + 5 diploma students
 - Some new analysis topics, e.g. QCD studies & searches inspired by new theoretical developments

Long term analysis strategy – 'archiving'

- Efforts to ensure long term viability of OPAL analysis:
 - Last year migrated OPAL analysis work from shift-SGI to Linux PC (Ixbatch)
 - Monte Carlo production also on lxbatch (large productions continue)
 - Migrated data access to Castor (LHC-era solution) via Fatmen
 - Massive tape copying from obselete media; will be phasing out TMS
 - Validation suite used for checking SGI/HP → Linux migration
 - Now being used for Redhat 6 → Redhat 7 migration
 - Improving user-level documentation
- Comments on 'archiving':
 - OPAL analysis will continue at a 'high' level for ~2 more years
 - Then a lower (but not zero) level anticipated responses to new ideas, e.g. from LHC
 - Maintain existing analysis software framework
 - Needs Fortran, (frozen) PAW/HBook, Castor for data/MC access, Cernlib
 - Maintain capability to produce Monte Carlo, but not to reprocess data
 - No 'simplified' or C++ analysis framework foreseen
 - Continue to use the existing tools and expertise within OPAL

Conclusions and outlook

- OPAL continues to produce many interesting new results
 - Shown results from electroweak / τ , final state interaction studies, b-physics, QCD and two-photons.
- Lots more to come, including ...
 - Searches: finalisation of many results, comprehensive interpretations in various models.
 - Higgs: MSSM, exotic Higgs, CP-violating...
 - Electroweak: Final LEP1 A_{FB}^b and A_{FB}^c with leptons coming soon, two and four fermions at LEP2.
 - WW & ZZ: Final results on cross sections, W mass, WW FSI, gauge couplings
 - QCD and two-photon many ongoing analyses, Photon 2003 in April
- OPAL is still very active and productive
 - Healthy collaboration with students, postdocs and senior physicists
 - Many new results to come this summer and beyond ...