SUSY Searches: Lessons and loopholes from LEP

Aleph

Delphi

SUSY02 DESY Hamburg Rob McPherson University of Victoria Institute of Particle Physics

Brussels/Beijing 1995:

◆ LEP 1: excluded to
 M_{susy} ≈ M_z / 2
 ◆ Always loopholes ...

• R_{b} high \implies low M_{susy}

See χ[±] at LEP1.5!

18 June 2002

Talk Outline

(very) Brief overview Experimental Searches Charginos in detail Sleptons in detail Summary of others SUSY Model-dependent constraints GMSB – neutralinos, sleptons, GMSB parameters mSUGRA / CMSSM – squarks, sleptons, LSP Conclusions and perspectives

Experimental Features of Different SUSY Models

Gravity Mediation with RPC

Gauge Mediation with RPC

- Stable LSP
 - CDM candidate: X
- FCNC problems
 - Fixed in mSUGRA
- Decay chains to χ
 - Missing Energy

... with RPV

- Unstable LSP
 - No CDM candidate
- FCNC problem worse
- Many new signatures

- 🔶 Light 🔓 LSP
 - Probably lose CDM cand.
- No severe FCNC problem
- NLSP X^o or
- Decay chains to NLSP then to G
 - Arbitrary suppression
 - Lifetime signatures

(I) LEP SUSY search strategy

With stable, weakly interacting LSP: Search for NLSP pair production Relatively model independent cross-sections Decay into LSP Mass Reach: Beam Energy Backgrounds Well understood "initial state" (ISR etc.) Well modeled by MC simulation Open triggers, wide coverage of all decay modes

CMSSM Charginos

18 June 2002

eg: .OR. of L3 selections for

 $F_{cm} = 205 - 208 G_{e} / (~200 \text{ nb}^{-1})$

◆ Depends on Evis and missing momentum
 ◆ ≈ΔM = M(X[±]) - M(X⁰)
 ◆ More weakly: M(X[±])
 ◆ But can start with simple cuts

∆M (GeV)	N _{Data}	N _{Exp}
10-30	55	47.0 ± 4.8
40-70	33	36.7 ± 3.6
>80	24	26.1 ± 1.6
All	112	109.7 ± 4.8

*p*_{TMiss}
 cos θ_{Miss}
 *E*_{Vis}

No Excesses

• Efficiencies: 10-60% for $\Delta M > 5 \text{ GeV}$

Cross-section > 1 pb easily excluded

 \Rightarrow Are we done yet?

Could we have missed $\tilde{\chi}^{+}\tilde{\chi}^{-}$?? Possible LOOPHOLES

- Smaller cross-sections?
 - Design (much?) more sensitive selections
 - ◆ M, ∆M dependent cuts, likelihoods ...
- ♦ Very small ΔM? (< few GeV)</p>
 - "deep higgsino": $\mu \ll M_2$
 - Gaugino but without GUT unification
 - ♦ AMSB ...
 - Harder to detect, may have lifetime
- Or maybe other decay modes missed
 - RPV (especially no missing energy)
 - GMSB (extra photons or leptons)

◆ Full M,∆M dependent likelihood difficult		Few bar	
Quantity	Bin	N ^o Bins	
М	5 GeV	20	
ΔM	1 GeV	100	
Е _{см}	≈ 1 GeV	≈ 10	MC
N _{MC} / Bin		10000	•
Total MC Events		2 x 10 ⁸	•

- Few x 10⁸ MC events barely possible
- Can revert to simpler
 - - "sliding cuts" (ALEPH)
- For Likelihood, use MCgrid + interpolation
 - Toy MC calibrated with full MC (DELPHI)
 - Likelihood histogram interpolation (OPAL)

$\tilde{\chi}^+ \tilde{\chi}^-$: Search Results

L3, Full LEPII data sets:

ADLO 35.2 pb⁻¹

Ecm > 207.5 GeV

$\tilde{\chi}^{+}\tilde{\chi}^{-}$: very small $\Delta M < M_{\pi}$: Long Lived Charged Particles

18 June 2002

Analysis: tag γ with soft tracks, veto e

Small ΔM : Higgsino Results **ADLO Preliminary**

ADLO Events Observed:

DIRECT RPV

INDIRECT RPV

6 fermion final states

10 (!) fermion final states

 \Rightarrow Low background, but many analyses needed!

General, open selections:

eg: λ₁₃₃ ("LLE") L3 192—208 GeV:

Process	Channel	Data	Bkg
direct	≥4 ℓ+jets	40	37
	+E _{miss}		
Indirect	2 or 4 l	10	10.1
	+E _{miss}		

Efficiency:

 20 - 40%

 Max cross-section:

 0.05 - 0.2 pb 95% C.L.

 Long χ° lifetimes: "Traditional" search
 Short χ̃° lifetimes: χ̃⁺ χ̃⁻ with γ's
 All lifetimes: (1) .OR. (2) ⇒ Overlap tricky to get right !

18 June 2002

$\tilde{\chi^{+}} \tilde{\chi^{-}}$ basic loophole: Light sleptons \approx invisible $\tilde{\chi}^{\pm}$ decays

- Reduced crosssection
- 2 body leptonic decays
- Can be ≈ invisible
 M(ℓ) = M(χ̃°₁)
 - $M(\tilde{\nu}) = M(\tilde{\chi^{\pm}})$
- Can try tricks but ...

Slepton search imperative

 $e^+e^- \rightarrow \ell^+ \ell^-$

 Θ

Standard "gravity mediated" modes

- ◆ "Acoplanar Leptons"
 ♦ ℓ⁺ℓ⁻ + E_{miss}
- Similar to Charginos with leptonic decays
 - $\diamond \Rightarrow$ Can recycle ...
- s-channel crosssections rather model independent

- Selectrons:
 - Also t-channel

 $\tilde{\mathbf{e}}$

 $\widetilde{\chi}^{0}$

- More forward peaked
- Usually higher crosssection
 - Can also be smaller

 $\widetilde{\chi}^{o}$

 $\tilde{\chi}^{0}$

 \tilde{e}^+

- Smuons:
 - Almost modelindependent
- Staus:
 - Mixing can decouple from Z
- Selectrons:
 - t-channel makes cross-section very model-dependent

Direct Decays (ALEPH)

Indirect Decays (ADLO)

GMSB $\tilde{\ell}^+ \tilde{\ell}^-$: Lifetime

 Image: Constraint of the second state of the second sta

- \Rightarrow Tracks from origin
- 2) Short Lifetime
 ⇒ Large Impact Parameter

Many overlapping channels

- Kinks, stable: low backgrounds
- Kinks, Large IP: unmodeled bkg.

Must consider (large) overlaps in analysis

- Medium Lifetime ⇒ Kinked Tracks
- 4) Long Lifetime
 - \Rightarrow Heavy Stable Charged

1)

GMSB $\tilde{\tau}^+ \tilde{\tau}^-$: Lifetime

1 – Prob(background)

Excluded Cross-section

LEP SUSY Channels

- $\tilde{G} \gamma, \tilde{G} \tilde{\chi}_{1}$
 - Superlight gravitino
- $\tilde{\chi}^+_1 \tilde{\chi}_1^-$
 - All types of SUSY
- $\widetilde{\chi}_{1}^{0} \widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{2}^{0} \widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{2}^{+} \widetilde{\chi}_{2}^{-} \ldots$
 - Cascades can plug exclusion holes
- Sgoldstinos, AMSB, light gluinos,...
 - A bit on the margins ...

 $\bullet \quad \tilde{\ell}^+_1 \tilde{\ell}^-_1$

All types of SUSY

Cascades for exclusion holes

- Large stop/sbottom mixing
- Can probe to small ΔM

No significant excesses (sigh)

(II) Constraints on SUSY Models

♦ GMSB $\diamond \widetilde{G}, \widetilde{\chi}^{0}, \widetilde{\ell}_{R}, \widetilde{\tau}_{1} \dots$ short, long or all lifetime $\diamond \Lambda$, M, N, tan β mSUGRA / CMSSM
 $\diamond \tilde{q}, \tilde{\ell}, \tilde{\chi}^{\pm}$ • M_2 vs. μ for different tan β • $\tilde{\chi}^{0}$ LSP (CDM candidate)

Main Frameworks "General" MSSM

		<u> </u>
M ₁ ,M ₂ ,M ₃	Gaugino masses	SM + 10
m _f	Sfermion masses	(+45 RP)
v,tan β, m_A, μ	Higgs(ino) mass/mixing	
$A_{U}, A_{D}, A_{L},$	Trilinear sfermion/higgs couplings	\rightarrow FCNC

mSUG	RA+ (gravity mediation)	_ 0
M ₂	(or m _{1/2}) Get <i>M₁,M₃</i> from GUT	F
<i>m</i> ₀	Scalar mass at GUT scale	Λ
tanβ	<i>v_{u/}v_d,</i> ratio of higgs vevs	Μ
A ₀	Common trilinear coupling	Ν
sign(μ)	Sign(Higgs mixing param)	tan
μ	Higgs mixing param	sigr
M _A	Higgs mass (use M _{H±} CPV)	
	1 1/ (or 6) paramotore	

GMSB (gauge mediation)

F	(or M_{G}^{\sim}) SUSY Breaking scale
Λ	Sparticle mass scale
Μ	Messenger mass
Ν	Number messenger sets
tanβ	<i>v_{u/}v_d,</i> ratio of higgs vevs
sign(μ)	Sign(Higgs mixing param)

SM + 5 ½ parameters

18 June 2002

(Tevatron I has similar sensitivity)

GMSB: $\tilde{\chi}^0$ **NLSP** $\gamma\gamma$ +**Emiss**

 $\widetilde{\chi}^{o}$

 $\widetilde{\chi}^{0}$

ẽ

G γ
 Dominant for χ⁰ NLSP and short lifetimes
 Inspired by CDF eeγγ event ...

18 June 2002

Cross-sections from model scans using Dimopoulos, Thomas, Wells Nucl.Phys.B488:39-91,1997

GMSB: comparison with Run II benchmark

ALEPH:- $\Delta M \approx 0$ excl. < 63 GeV - 4 body decays too

Assumes: - 5 degenerate quarks - GUT relations

18 June 2002

18 June 2002

General CMSSM: $\tilde{\chi^0}$ LSP

mSUGRA LSP constraint

M_{LSP} > **59 GeV** (**M**_{top}=**175 GeV**)

More Information

Experiments' results from their web pages

- http://alephwww.cern.ch/
- http://delinfo.cern.ch/Delphi/Welcome.html
- http://I3www.cern.ch/
- http://opal.web.cern.ch/Opal/
- LEP SUSY Working Group combinations
 - http://lepsusy.web.cern.ch/lepsusy/
- And see talks at this meeting with many more details:
 - MSSM: Mikael Berggren, Univ.Paris VI et VII
 - GMSB: Aran Garcia-Bellido, Royal Holloway, Univ.London
 - RPV: Silvia Costantini, INFN-Rome

 The LEP experiments scoured many (all?) corners for SUSY

- e⁺e⁻ environment allowed many "exotic susy" modes and holes in parameter spaces to be explored
- No serious hints of a signal

 Years of constructive interaction with the theory community

♦ Standard modes ⇒ Null results ⇒ New models ⇒ New searches

♦ $M(\tilde{\chi}^{\pm}) \leq E_{\text{beam}} \approx 100 \text{ GeV} \Rightarrow M(\tilde{\chi}^{0}) \leq M(\tilde{\chi}^{\pm})/2 \approx 50 \text{ GeV}$

Rather robust constraints with very few loopholes left

- LEP SUSY constraints hard to evade
 - Must look for NLSP beyond our kinematic limit