Event selection  

Object selection

10 TeV

More  Less 

14 TeV

More  Less 

Leptons

Leptons are reconstructed in the following way:

  • electrons - pixelMatchGsfElectrons
  • muons - globalMuons

Observables for leptons

The main characteristic for leptons coming from the W decay is the fact that they should be prompt and isolated. Other variables can be used to clean the leptons of interest: electromagnetic fraction, E/p, lepton identification, etc.

Reconstructed lepton observables
  $p_{T}$ spectrum $\eta$ distribution Track impact parameter $\frac{E}{p_{track}}$
e
$\mu$
  electromagnetic fraction Isolation in tracker and calorimeter  
e  
$\mu$  

Single lepton selection efficiency and purity

Our lepton selection is defined below.

Lepton selection
Selection steps Electrons selected Muons selected
kinematics $p_{T} \geq 20 GeV/c$ ; $\vert \eta \vert = 2.4$
calorimetric cuts $\begin{cases}{ e & calo iso 6 GeV & \\ \mu & calo iso  5 GeV }\end{cases}$
isolation $\sum_{tracks} p_{T_{i}} (\Delta R \leq 0.3) \leq 3 GeV/c$
id $\begin{cases}{ e & tight & \\ \mu & none } \end{cases} $

After selection the lepton purity is the following:

Sample Leptonic purity
e $\mu$
Madgraph 1.00 $\pm$ 0.02 0.98 $\pm$ 0.02
Alpgen 0.96 $\pm$ 0.01 0.952 $\pm$ 0.005
Purity 0.96 $\pm$ 0.01 (stat) $\pm$ 0.03 (syst) 0.952 $\pm$ 0.005 (stat) $\pm$ 0.03 (syst)

The probability of reconstructing and selecting both hard leptons is the following:

Sample P(select n hard leptons)
0 1 2
Madgraph 0.240 $\pm$ 0.004 0.487 $\pm$ 0.006 0.273 $\pm$ 0.004
Alpgen 0.227 $\pm$ 0.001 0.483 $\pm$ 0.002 0.290 $\pm$ 0.002
${\bf P_{sel} }$ 0.227 $\pm$ 0.001 (stat) $\pm$ 0.013 (syst) 0.483 $\pm$ 0.002 (stat) $\pm$ 0.004 (syst) 0.290 $\pm$ 0.002 (stat) $\pm$ 0.018 (syst)

Jets

Jets are reconstructed using the iterative cone algorithm with $\Delta R=0.5$ from the calorimetric towers with $E_{T}(min)=0.5 GeV$. A minimum $E_{T}$ of 2 GeV and 2 towers is required as pre-selection. The tracks with at least 8 hits, a $\chi^{2}\leq5.0$ and $p_{T}\geq 1GeV/c$ are associated to the calorimetric cluster if they are matched to it within a cone of $\Delta R=0.5$. No jet cleaning (matching with reconstructed electrons or muons is done).

Observables for jets

Reconstructed jet observables
$p_{T}$ spectrum $\eta$ distribution emf b-tag discriminator
Calorimetric constituents Associated tracks
nearest jet        
     

Likelihood ratio method
In order to increase the purity of the jets selected in an event we try to characterize better some experimentally measurable distributions of the jets (e.g. jet width, number of tracks, charge, etc.). For each jet we compute a list of observables and we check if it can be matched to the quark generated by the top decay (b,s or d ). This allows us to define two distributions:
  • $S(x) = %$\frac{dN_{jets}^{matched}}{dx}$ - the "signal" distribution for the jets whose purity we want to increase.
  • $B(x) = %$\frac{dN_{jets}^{not matched}}{dx}$ - the "background" distribution for the jets remaining, after the selection, which you want to remove.
The distributions S(x) and B(x) are defined with inclusive first and last bins. As so, the first(last) bin should be interpreted as the number of jets with an observable x , $x\leqx_{min}$($x\geqx_{max}$). The probability distribution function - $f(x)=\frac{S(x)}{S(x)+B(x)}$ gives the probability that a signal jet has an observable x between x and x+dx. Having defined the p.d.f.'s for signal jets one can define the combined likelihood as:
  • $L=\prod_{i} \frac{f(x_{i})}{\bar{f}(x_{i})} = \prod_{i} \frac{f(x_{i})}{1-f(x_{i})}$
In order to reduce possible bias sources the different p.d.f.'s must:
  • have low correlations ($\rho = \frac{cov(x,y)}{\sigma_{x}\sigma_{y}} \leq 30\% $)
  • not bias towards the selection of a specific jet flavor (b,s,d)
The table below summarizes the distributions for the observables chosen and the correspondent likelihood obtained when using Madgraph (All b and All q samples).

Jet properties
x S(x) and B(x) $f(x)=\frac{S}{S+B}$ Cross correlations
$\eta_{jet}$
$\frac{E_{T}}{jet\; area}}$
$n_{90}$, number of towers with $90\%$ of the jet energy
$i_{jet}$, jet index in a $p_{T}$ ordered jet collection
$\min \Delta \eta(jet,lepton)$
Combined Likelihood
likelihood signal efficiency vs. background efficiency

Single jet selection efficiency and purity

Our jet selection is defined below

Jet selection
Selection steps Jets surviving selection Multiplicity Likelihood (after pre-selection)
kinematics $p_{T} \geq 20 GeV/c$ ; $\vert \eta \vert \leq 2.4$
calorimetric cuts $ emf \leq 0.95 $
topology $\Delta R(jet,leptons/jets) \geq 0.5 $
likelihood $comb L \geq 0$

After selection the jet purity is lower than lepton purity (as expected due to the high jet multiplicity):

Sample Jet purity
Madgraph 0.726 $\pm$ 0.007
Alpgen 0.725 $\pm$ 0.003
Purity 0.725 $\pm$ 0.003 (stat) $\pm$ 0.01 (syst)

The probability of reconstructing and selecting both hard jets from the top decay is, however higher than the one obtainde for leptons:

Sample P(select n hard jets)
0 1 2
Madgraph 0.137 $\pm$ 0.003 0.427 $\pm$ 0.005 0.435 $\pm$ 0.005
Alpgen 0.124 $\pm$ 0.001 0.425 $\pm$ 0.002 0.451 $\pm$ 0.002
${\bf P_{sel} }$ 0.124 $\pm$ 0.001 (stat) $\pm$ 0.013 (syst) 0.425 $\pm$ 0.002 (stat) $\pm$ 0.003 (syst) 0.451 $\pm$ 0.002 (stat) $\pm$ 0.016 (syst)

MET

In the di-leptonic channel the missing transverse energy has two main sources:

  • neutrinos emitted by the decay of the W's generated by the top decay
  • neutrinos emitted in the leptonic decay of $\tau$'s
The spectrum of the MET reconstructed by the corMetType1Icone5 algorithm, after selecting at least 2 leptons and 2 jets, is shown below:

Our MET pre-selection is defined as: MET > 50 GeV .

Event selection

Trigger

We require a or of HLT trigger bits dedicated to single leptons:

  1. HLT1ElectronRelaxed
  2. HLT1Electron
  3. HLT1MuonIso
  4. HLT1MuonNonIso

Selection

The table below summarizes the event selection used for the di-leptonic channel:

Selection step Constraints Event selection
$trigger $ or of HLT trigger bits for single leptons  
$\geq$ 2 leptons $p_{T} \geq 20 GeV/c$ ; $\vert \eta \vert =  2.4$
$\begin{cases}{ e & calo iso 6 GeV & \\ \mu & calo iso  5 GeV }\end{cases}$
$\sum_{tracks} p_{T_{i}} (\Delta R \leq 0.3) \leq 3 GeV/c$
id : $\begin{cases}{ e & tight & \\ \mu & none } \end{cases} $
$\geq$ 2 jets $p_{T} \geq 20 GeV/c$ ; $\vert \eta \vert \leq 2.4$
$ emf \leq 0.95 $
$\Delta R(jet,leptons/jets) \geq 0.5 $
$comb L \geq 0$
$\displaystyle{\not} E_{T}$ $\geq 50 GeV/c $
op. sign leptons $\geq 2$

The table below summarizes the events surviving each selection step (computed from the CSA07 samples).

Total events accepted (L=100/pb)
Selection step Physics process
$t\bar{t}\leftrightarrow e\mu$ other $t\bar{t}$ $W+jets$ $Z+jets$ $tW$ $WW$ $WZ$ $ZZ$
triggered 2528 $\pm$ 11 22048 $\pm$ 31 869 $\pm$ 0.6 $\cdot 10^{3}$ 169 $\pm$ 0.2 $\cdot 10^{3}$ 2684 $\pm$ 11 4734 $\pm$ 12 1300 $\pm$ 6 530 $\pm$ 4
$\geq 2$ leptons 773 $\pm$ 6 29 $\pm$ 1 134 $\pm$ 5 275 $\pm$ 6 111 $\pm$ 2 176 $\pm$ 2 25.6 $\pm$ 0.8 9.4 $\pm$ 0.6
$\geq 2$ jets 492 $\pm$ 5 21 $\pm$ 1 13.4 $\pm$ 0.8 19.4 $\pm$ 1.4 31.3 $\pm$ 0.8 11.4 $\pm$ 0.6 2.5 $\pm$ 0.3 1.1 $\pm$ 0.2
MET 350 $\pm$ 4 13.4 $\pm$ 0.8 5.5 $\pm$ 0.8 6.8 $\pm$ 0.7 21.2 $\pm$ 0.7 7.6 $\pm$ 0.5 1.4 $\pm$ 0.2 0.4 $\pm$ 0.1
opposite sign 346 $\pm$ 4 8.3 $\pm$ 0.6 1.8 $\pm$ 0.5 6.4 $\pm$ 0.7 20.4 $\pm$ 0.6 7.5 $\pm$ 0.5 0.8 $\pm$ 0.1 0.3 $\pm$ 0.1

After the last selection step the acceptance for the total $t\bar{t}$ cross section is the following:

Sample $A_{cc} \cdot Br$
Madgraph (all b) 0.0035 $\pm$ 0.0004
Madgraph (all q) 0.0040 $\pm$ 0.0005
Alpgen 0.0043 $\pm$ 0.0005
${\bf A_{cc} \cdot Br } \times 10^{3} $ 4.3 $\pm$ 0.5 (stat) $\pm$ 0.8 (syst)

Control distributions

Below we show some control distributions for the selected events, that can be used for the dilepton channel.

Jet multiplicity $H_{T}$
${\not}E_{T}$ b-tag multiplicity (TC2)

Background estimation from data

Flipped (and swapped) $\chi^{2}$ method (summary)

Below we explore how to use a $\chi^{2}$ based method to subtract background from the data. The baseline idea is to build $\chi^{2}$ measure that, by a change variables, leaves the background invariant but not the signal. Having a $\chi^{2}$ with such probabilities one can do the following event selection:

  1. normal selection: $\chi^{2} \leq \chi^{2}_{cut} $ - will select signal-like events with some quality criteria and some background events
  2. flipped selection: $\chi^{2}_{flip} \leq \chi^{2}_{cut} $ - will reject signal-like events but will select combinatorial background events
The $\chi^{2}$ is well constructed if both selections yields more or less the same background events leaving the distributions of interest (kinematics, b-tagging multiplicity, etc.) invariant.

By the procedure described above one obtains two distinct distributions $h_{normal}(x)$ and $h_{flipped}(x)$ depending on the event selection used. By taking the difference of these distributions the background contributions will be eliminated effectively if the requirement for the $\chi^{2}$ is met. Then $h_{1}(x)-h_{2}(x)$ is equivalent to $h(x)$ obtained from a 100% pure signal sample. Next we discuss the construction of the $\chi^{2}$ having in mind these requirmentes.

Jet + lepton kinematics based $\chi^{2}$

As point of departure we choose 2 distributions based on the kinematics of the jet and lepton produced at a top decay vertex: the invariant mass and the transverse mass of the pair. The distributions, for these quantities, obtained at Monte-Carlo level, are shown below:

Jet+lepton pair kinematics at Monte-Carlo level
Invariant mass Transverse mass (square root)
$\chi^{2}_{inv. mass} = ( \frac{ 81.47 - P_{\mu}(jet)P^{\mu}(lepton)^{1/2} } { 36.73 } )^{2} $ $\chi^{2}_{m_{T}} = ( \frac{ 10.97 - P_{\mu T}(jet)P^{\mu}_{T} (lepton)^{1/4} } { 2.19  } )^{2} $

For each event selected we proceed as follows:

  1. select the 2 highest $p_{T}$ leptons as the leptons from W decay generated after the top decay;
  2. if the number of selected jets is higher than 2 than we select the 3 jets with highest combined likelihood ratio value;
  3. try all jet+lepton combinations to build the $\chi^{2}$ matrix using the formulas from the table above;
  4. find the 2 jet+lepton pairs (excluding double-counting) that minimize the $\chi^{2}$ matrix;
  5. repeat the computation of the matrix but flipping the lepton's momentum - $\chi^{2}_{flip}$;
We compute then the following quantities for the 2 pairs that minimize the $\chi^{2}$ matrix:
  1. $\chi^{2} = \chi^{2}( \vec{l}_{1}; \vec{j}_{1}) + \chi^{2}( \vec{l}_{2}; \vec{j}_{2})  $ - sum;
  2. $\chi^{2}_{flip} = \chi^{2}( - \vec{l}_{1}; \vec{j}_{1}) + \chi^{2}( -\vec{l}_{2}; \vec{j}_{2}) $ - inverting the 3-momentum of the leptons;
  3. $\chi^{2}_{swap} = \chi^{2}( \vec{l}_{2}, \vec{j}_{1}) + \chi^{2}( \vec{l}_{1}; \vec{j}_{2}) $ - swapping the leptons in each pair;
The table below shows the distributions obtained for signal and background events for these quantities:

$\chi^{2}$ distributions
Event type Kinematics used in jet+lepton pairing
Invariant mass Transverse mass (square root)
Signal
Background

The coice of the cut $x$ for $\chi^{2}$ is made maximizing the event yield after subtraction, that is, finding $\max \int_{0}^{x}\chi^{2}-\chi^{2}_{flip,swap}$. The table below summarizes the cuts chosen for $\chi^{2}$.

Selection cut for $\chi^{2}$ distributions
Subtraction mode Kinematics used in jet+lepton pairing
Invariant mass Transverse mass (square root)
Flip 3.35 2.45
Swap 2.15 0.75

We select each event using the 3 $\chi^{2}$ defined above and the cuts defined in the previous table. For each selected event we compute the b-tag multiplicity for different values of the b-tagging discriminator. The distributions obtained for each selection are shown below. We also show the results obtained after subtracting the distribution obtained with the $\chi^{2}_{flip}$ or $\chi^{2}_{swap}$ selections from the one obtained with the $\chi^{2}$ selection.

b-tag multiplicity distributions
b-tag working point Full data After background subtraction
Invariant mass flip Invariant mass swap Transverse mass (square root) flip Transverse mass (square root) swap
Loose point for track counting (TC2=2.3)
Medium point for track counting (TC2=5.3)

Topic attachments
I Attachment History Action Size Date Who Comment
PNGpng HT.png r2 r1 manage 54.5 K 2008-09-02 - 10:53 PedroSilva  
PNGpng HT_2leptons.png r1 manage 16.5 K 2008-07-07 - 10:28 PedroSilva  
PNGpng HTleadingjets.png r1 manage 16.4 K 2008-07-07 - 10:29 PedroSilva  
PNGpng MET.png r1 manage 19.5 K 2008-07-07 - 10:29 PedroSilva  
PNGpng btagMult_TC2_data.png r1 manage 80.5 K 2008-09-02 - 10:56 PedroSilva  
PNGpng btagMult_loosept_data.png r1 manage 27.7 K 2008-09-02 - 13:45 PedroSilva  
PNGpng btagMult_loosept_minv_flip.png r2 r1 manage 26.5 K 2008-09-02 - 13:46 PedroSilva  
PNGpng btagMult_loosept_minv_swap.png r2 r1 manage 28.7 K 2008-09-02 - 13:47 PedroSilva  
PNGpng btagMult_loosept_mt_flip.png r2 r1 manage 28.3 K 2008-09-02 - 13:47 PedroSilva  
PNGpng btagMult_loosept_mt_swap.png r2 r1 manage 28.1 K 2008-09-02 - 13:48 PedroSilva  
PNGpng btagMult_mediumpt_data.png r1 manage 29.2 K 2008-09-02 - 13:48 PedroSilva  
PNGpng btagMult_mediumpt_minv_flip.png r2 r1 manage 25.2 K 2008-09-02 - 13:49 PedroSilva  
PNGpng btagMult_mediumpt_minv_swap.png r2 r1 manage 27.7 K 2008-09-02 - 13:50 PedroSilva  
PNGpng btagMult_mediumpt_mt_flip.png r2 r1 manage 26.4 K 2008-09-02 - 13:50 PedroSilva  
PNGpng btagMult_mediumpt_mt_swap.png r2 r1 manage 26.9 K 2008-09-02 - 13:51 PedroSilva  
PNGpng btag_mult_0_chi2_mT.png r4 r3 r2 r1 manage 21.6 K 2008-07-25 - 10:09 PedroSilva  
PNGpng btag_mult_0_chi2_mT_bckg.png r3 r2 r1 manage 22.8 K 2008-07-25 - 10:10 PedroSilva  
PNGpng btag_mult_0_chi2_minv.png r4 r3 r2 r1 manage 20.5 K 2008-07-25 - 10:10 PedroSilva  
PNGpng btag_mult_0_chi2_minv_bckg.png r3 r2 r1 manage 21.3 K 2008-07-25 - 10:10 PedroSilva  
PNGpng btag_mult_1_chi2_mT.png r4 r3 r2 r1 manage 21.3 K 2008-07-25 - 10:11 PedroSilva  
PNGpng btag_mult_1_chi2_mT_bckg.png r3 r2 r1 manage 24.2 K 2008-07-25 - 10:12 PedroSilva  
PNGpng btag_mult_1_chi2_minv.png r4 r3 r2 r1 manage 20.7 K 2008-07-25 - 10:12 PedroSilva  
PNGpng btag_mult_1_chi2_minv_bckg.png r4 r3 r2 r1 manage 22.3 K 2008-07-25 - 10:15 PedroSilva  
PNGpng btag_mult_2_chi2_mT.png r4 r3 r2 r1 manage 19.9 K 2008-07-25 - 10:14 PedroSilva  
PNGpng btag_mult_2_chi2_mT_bckg.png r3 r2 r1 manage 22.0 K 2008-07-25 - 10:15 PedroSilva  
PNGpng btag_mult_2_chi2_minv.png r4 r3 r2 r1 manage 20.7 K 2008-07-25 - 10:14 PedroSilva  
PNGpng btag_mult_2_chi2_minv_bckg.png r3 r2 r1 manage 20.2 K 2008-07-25 - 10:15 PedroSilva  
PNGpng btag_mult_3_chi2_mT.png r4 r3 r2 r1 manage 18.3 K 2008-07-25 - 10:16 PedroSilva  
PNGpng btag_mult_3_chi2_mT_bckg.png r3 r2 r1 manage 18.9 K 2008-07-25 - 10:16 PedroSilva  
PNGpng btag_mult_3_chi2_minv.png r4 r3 r2 r1 manage 18.9 K 2008-07-25 - 10:17 PedroSilva  
PNGpng btag_mult_3_chi2_minv_bckg.png r3 r2 r1 manage 17.7 K 2008-07-25 - 10:17 PedroSilva  
PNGpng btag_mult_loose_chi2_mT.png r2 r1 manage 15.3 K 2008-07-25 - 10:53 PedroSilva  
PNGpng btag_mult_loose_chi2_mT_bckg.png r2 r1 manage 14.9 K 2008-07-25 - 10:18 PedroSilva  
PNGpng btag_mult_loose_chi2_minv.png r2 r1 manage 16.0 K 2008-07-25 - 10:34 PedroSilva  
PNGpng btag_mult_loose_chi2_minv_bckg.png r2 r1 manage 15.4 K 2008-07-25 - 10:20 PedroSilva  
PNGpng btag_mult_medium_chi2_mT.png r2 r1 manage 15.6 K 2008-07-25 - 10:54 PedroSilva  
PNGpng btag_mult_medium_chi2_mT_bckg.png r2 r1 manage 15.0 K 2008-07-25 - 10:24 PedroSilva  
PNGpng btag_mult_medium_chi2_minv.png r3 r2 r1 manage 15.4 K 2008-07-25 - 10:47 PedroSilva  
PNGpng btag_mult_medium_chi2_minv_bckg.png r2 r1 manage 15.0 K 2008-07-25 - 10:25 PedroSilva  
PNGpng chi2_bckg_mTql.png r3 r2 r1 manage 20.5 K 2008-07-25 - 10:25 PedroSilva  
PNGpng chi2_bckg_mTql_lin.png r3 r2 r1 manage 20.8 K 2008-07-25 - 10:34 PedroSilva  
PNGpng chi2_bckg_minvql.png r3 r2 r1 manage 21.5 K 2008-07-25 - 10:26 PedroSilva  
PNGpng chi2_bckg_minvql_lin.png r3 r2 r1 manage 20.6 K 2008-07-25 - 10:26 PedroSilva  
PNGpng chi2_eff_bckg_mTql.png r2 r1 manage 16.5 K 2008-07-25 - 10:27 PedroSilva  
PNGpng chi2_eff_bckg_minvql.png r2 r1 manage 15.8 K 2008-07-25 - 10:29 PedroSilva  
PNGpng chi2_eff_signal_mTql.png r2 r1 manage 15.6 K 2008-07-25 - 10:28 PedroSilva  
PNGpng chi2_eff_signal_minvql.png r2 r1 manage 15.4 K 2008-07-25 - 10:28 PedroSilva  
PNGpng chi2_mT_compared.png r1 manage 58.1 K 2008-09-02 - 10:55 PedroSilva  
PNGpng chi2_minv_bckg_compared.png r1 manage 39.2 K 2008-09-02 - 12:06 PedroSilva  
PNGpng chi2_minv_signal_compared.png r1 manage 49.9 K 2008-09-02 - 12:07 PedroSilva  
PNGpng chi2_mt_bckg_compared.png r1 manage 36.8 K 2008-09-02 - 12:07 PedroSilva  
PNGpng chi2_mt_signal_compared.png r1 manage 49.9 K 2008-09-02 - 12:08 PedroSilva  
PNGpng chi2_signal_mTql.png r4 r3 r2 r1 manage 20.6 K 2008-07-25 - 10:28 PedroSilva  
PNGpng chi2_signal_mTql_lin.png r2 r1 manage 19.8 K 2008-07-25 - 10:25 PedroSilva  
PNGpng chi2_signal_minvql.png r4 r3 r2 r1 manage 21.3 K 2008-07-25 - 10:29 PedroSilva  
PNGpng chi2_signal_minvql_lin.png r2 r1 manage 19.8 K 2008-07-25 - 10:29 PedroSilva  
PNGpng e_EoverP.png r1 manage 23.1 K 2008-07-04 - 20:53 PedroSilva  
PNGpng e_caloIso.png r2 r1 manage 24.3 K 2008-07-04 - 20:53 PedroSilva  
PNGpng e_d0sig.png r2 r1 manage 23.8 K 2008-07-04 - 20:53 PedroSilva  
PNGpng e_emf.png r1 manage 18.3 K 2008-07-04 - 21:47 PedroSilva  
PNGpng e_eta.png r2 r1 manage 23.9 K 2008-07-04 - 20:54 PedroSilva  
PNGpng e_pT.png r2 r1 manage 24.7 K 2008-07-04 - 21:37 PedroSilva  
PNGpng e_sel.png r1 manage 15.0 K 2008-07-07 - 10:42 PedroSilva  
PNGpng e_trackerIso.png r2 r1 manage 24.6 K 2008-07-04 - 20:54 PedroSilva  
PNGpng evSel_CSA07.png r1 manage 15.4 K 2008-07-01 - 22:16 PedroSilva  
PNGpng event_sel.png r2 r1 manage 17.6 K 2008-07-28 - 13:01 PedroSilva  
PNGpng evsel.png r1 manage 17.3 K 2008-09-02 - 12:26 PedroSilva  
PNGpng jetCombLR.png r1 manage 71.9 K 2008-09-02 - 10:50 PedroSilva  
PNGpng jetCombLR_eff.png r1 manage 37.3 K 2008-09-02 - 10:51 PedroSilva  
PNGpng jet_btag.png r2 r1 manage 24.9 K 2008-07-04 - 13:03 PedroSilva  
PNGpng jet_combLR.png r2 r1 manage 21.8 K 2008-07-04 - 13:04 PedroSilva  
PNGpng jet_emf.png r2 r1 manage 22.6 K 2008-07-04 - 13:04 PedroSilva  
PNGpng jet_eta.png r3 r2 r1 manage 22.6 K 2008-07-04 - 21:16 PedroSilva  
PNGpng jet_eta_SandB.png r1 manage 45.6 K 2008-09-02 - 10:45 PedroSilva  
PNGpng jet_eta_corr.png r1 manage 58.5 K 2008-09-02 - 10:35 PedroSilva  
PNGpng jet_eta_f.png r1 manage 36.0 K 2008-09-02 - 10:35 PedroSilva  
PNGpng jet_etdens_SandB.png r1 manage 53.2 K 2008-09-02 - 10:46 PedroSilva  
PNGpng jet_etdens_corr.png r1 manage 29.3 K 2008-09-02 - 10:36 PedroSilva  
PNGpng jet_etdens_f.png r1 manage 44.0 K 2008-09-02 - 10:37 PedroSilva  
PNGpng jet_ijet_SandB.png r1 manage 46.7 K 2008-09-02 - 10:47 PedroSilva  
PNGpng jet_ijet_corr.png r1 manage 14.6 K 2008-09-02 - 10:46 PedroSilva  
PNGpng jet_ijet_f.png r1 manage 38.3 K 2008-09-02 - 10:47 PedroSilva  
PNGpng jet_minDRjj.png r2 r1 manage 20.1 K 2008-07-04 - 21:18 PedroSilva  
PNGpng jet_mindetajl_SandB.png r1 manage 42.1 K 2008-09-02 - 10:48 PedroSilva  
PNGpng jet_mindetajl_f.png r1 manage 43.2 K 2008-09-02 - 10:47 PedroSilva  
PNGpng jet_multiplicity.png r2 r1 manage 15.6 K 2008-07-04 - 13:07 PedroSilva  
PNGpng jet_n90_SandB.png r1 manage 48.1 K 2008-09-02 - 10:50 PedroSilva  
PNGpng jet_n90_corr.png r1 manage 39.6 K 2008-09-02 - 10:49 PedroSilva  
PNGpng jet_n90_f.png r1 manage 43.3 K 2008-09-02 - 10:49 PedroSilva  
PNGpng jet_pT.png r3 r2 r1 manage 24.3 K 2008-07-04 - 13:41 PedroSilva  
PNGpng jet_sel.png r1 manage 16.6 K 2008-07-07 - 10:43 PedroSilva  
PNGpng jet_selection_efficiencies.png r1 manage 10.6 K 2008-06-30 - 10:49 PedroSilva  
PNGpng jet_selection_efficiency.png r2 r1 manage 13.4 K 2008-06-30 - 11:21 PedroSilva  
PNGpng jet_towerET.png r2 r1 manage 24.5 K 2008-07-04 - 13:47 PedroSilva  
PNGpng jet_trackpT.png r2 r1 manage 25.5 K 2008-07-04 - 13:47 PedroSilva  
PNGpng jet_zMaxTowers.png r3 r2 r1 manage 22.4 K 2008-07-04 - 21:17 PedroSilva  
PNGpng jet_zMaxTracks.png r3 r2 r1 manage 27.2 K 2008-07-04 - 21:18 PedroSilva  
PNGpng jets_mult.png r1 manage 31.0 K 2008-09-02 - 10:54 PedroSilva  
PNGpng likelihood_distributions.png r1 manage 11.4 K 2008-06-30 - 10:49 PedroSilva  
PNGpng mT.png r1 manage 16.7 K 2008-07-07 - 10:29 PedroSilva  
PNGpng mT_ql.png r2 r1 manage 18.3 K 2008-07-21 - 18:01 PedroSilva  
PNGpng met.png r1 manage 42.5 K 2008-09-02 - 10:54 PedroSilva  
PNGpng minv_ql.png r2 r1 manage 16.9 K 2008-07-21 - 18:23 PedroSilva  
PNGpng minv_ql_compared_gen.png r1 manage 42.4 K 2008-09-02 - 11:05 PedroSilva  
PNGpng mu_EoverP.png r1 manage 17.6 K 2008-07-04 - 20:54 PedroSilva  
PNGpng mu_caloIso.png r2 r1 manage 20.8 K 2008-07-04 - 20:55 PedroSilva  
PNGpng mu_d0sig.png r2 r1 manage 25.5 K 2008-07-04 - 20:56 PedroSilva  
PNGpng mu_emf.png r1 manage 21.1 K 2008-07-04 - 21:17 PedroSilva  
PNGpng mu_eta.png r2 r1 manage 24.4 K 2008-07-04 - 21:02 PedroSilva  
PNGpng mu_pT.png r2 r1 manage 24.8 K 2008-07-04 - 21:37 PedroSilva  
PNGpng mu_sel.png r1 manage 16.1 K 2008-07-07 - 10:42 PedroSilva  
PNGpng mu_trackerIso.png r2 r1 manage 22.9 K 2008-07-04 - 20:56 PedroSilva  
PNGpng observable1.png r1 manage 18.3 K 2008-06-30 - 10:47 PedroSilva  
PNGpng observable11.png r1 manage 23.1 K 2008-06-30 - 10:48 PedroSilva  
PNGpng observable19.png r1 manage 19.4 K 2008-06-30 - 10:48 PedroSilva  
PNGpng observable23.png r1 manage 22.2 K 2008-06-30 - 10:48 PedroSilva  
PNGpng observable4.png r1 manage 19.7 K 2008-06-30 - 10:48 PedroSilva  
PNGpng sqmt_ql_compared_gen.png r1 manage 43.1 K 2008-09-02 - 11:05 PedroSilva  
PNGpng triggerEfficiency_reco.png r1 manage 15.7 K 2008-07-03 - 12:07 PedroSilva  
Edit | Attach | Watch | Print version | History: r53 < r52 < r51 < r50 < r49 | Backlinks | Raw View | WYSIWYG | More topic actions
Topic revision: r53 - 2008-11-19 - PedroSilva
 
    • Cern Search Icon Cern Search
    • TWiki Search Icon TWiki Search
    • Google Search Icon Google Search

    Main All webs login

This site is powered by the TWiki collaboration platform Powered by PerlCopyright &© 2008-2024 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
or Ideas, requests, problems regarding TWiki? use Discourse or Send feedback