Homework - 3
Due: November 9, 2017 (TUE)

CL ELECTRODYN II (2304604)

Lecturer: N. Srimanobhas

Problem 1.

Show explicitly that two successive Lorentz transformations in the same direction are equivalent to a single Lorentz transformation with a velocity

$$
v=\frac{v_{1}+v_{2}}{1+\left(v_{1} v_{2} / c^{2}\right)} .
$$

This is an alternative way to derive the parallel-velocity addition law.

Problem 2.

A coordinate system K^{\prime} moves with a velocity \mathbf{v} relative to another system K. In K^{\prime} a particle has a velocity \mathbf{u}^{\prime} and an acceleration \mathbf{a}^{\prime}. Find the Lorentz transformation law for accelerations, and show that in the system K the components of acceleration parallel and perpendicular to \mathbf{v} are

$$
\begin{aligned}
& \mathbf{a}_{\|}=\frac{\left(1-\frac{v^{2}}{c^{2}}\right)^{3 / 2}}{\left(1+\frac{\mathbf{v} \cdot \mathbf{u}^{\prime}}{c^{2}}\right)^{3}} \mathbf{a}_{\|}^{\prime} \\
& \mathbf{a}_{\perp}=\frac{\left(1-\frac{v^{2}}{c^{2}}\right)}{\left(1+\frac{\mathbf{v} \cdot \mathbf{u}^{\prime}}{c^{2}}\right)^{3}}\left(\mathbf{a}^{\prime}{ }_{\perp}+\frac{\mathbf{v}}{c^{2}} \times\left(\mathbf{a}^{\prime} \times \mathbf{u}^{\prime}\right)\right)
\end{aligned}
$$

Problem 3.

The electric field of a laser beam is linearly polarized vertically, is axially symmetric, and has a magnitude which depends upon distance from the laser's axis as follows:

$$
\mathbf{E}=\mathbf{E}_{\mathbf{0}} e^{-s^{2} / s_{0}^{2}}=\mathbf{E}_{\mathbf{0}} e^{-\left(x^{\prime 2}+y^{\prime 2}\right) / s_{0}^{2}}
$$

The laser beam is pointed perpendicular to a screen which lies a very long distance r $\left(\gg s_{0}\right)$ away from the laser. What is the electric field on this screen, as a function of distance $q=\sqrt{x^{2}+y^{2}}$ from the point on the screen at which the laser is aimed? Hint: work in Cartesian coordinates initially, and complete the square in the exponent of the integrand, to carry out the integral.

