Wave motion and sound waves

N. Srimanobhas
Norraphat.Srimanobhas@cern.ch

https://twiki.cern.ch/twiki/bin/view/Main/PhatSrimanobhasTeaching

Contents

- Wave motion and sound waves
- Propagation of a disturbance \& types of mechanical waves
- Wave function \& wave equation
- Sinusoidal wave
- Rate of energy transfer by sinusoidal wave on string
- Sound wave
\Rightarrow Speed of sound wave
\Rightarrow Intensity of periodic sound wave
= Doppler effect

> นิสิตควรทำแบบฝึกหัดทุกข้อ ในเอกสารนี้ให้ได้เอง และฝึกทำแบบฝึกหัดท้ายบทของหนังสืออ้างอิงเพิ่มเติม

คลื่นกล (Mechanical wave)

คลื่นที่เคลื่อนที่ไปโดยการสั่นของตัวกลาง มีการส่งผ่านพลังงานไป ในตัวกลาง

- ต้องมีการรบกวนระบบ (ใส่พลังงานเข้าไป ในระบบ)
- ต้องอาศัยตัวกลาง แต่ตัวกลางไม่ได้เคลื่อนที่ตามคลื่น แต่จะสั่น

ไปมารอบจุดสมดุล

- การเคลื่อนที่ของคลื่นจะส่งผ่านพลังงานจากบริเวณหนึ่ง ๆ ของ ตัวกลางไปสู่บริเวณอื่น ๆ

คลื่นตามขวาง (Transverse wave)

The direction of the displacement of any element at a point P on the string is perpendicular to the direction of propagation (red arrow).

อนุภาคตัวกลางเคลื่อนที่ (หรือสั่น) ใน แนวตั้งฉากกับการเคลื่อนที่ของคลื่น ตัวอย่างเช่น

- คลื่นในเส้นเชือก

คลื่นตามยาว (Longitudinal wave)

```
อนุภาคตัวกลางเคลื่อนที่ (หรือสั่น) ในแนวเดียว
กับการเคลื่อนที่ของคลื่น ตัวอย่างเช่น
- คลื่นเสียง
    - คลื่นในสปริง
```

The hand moves forward
and back once to create
a longitudinal pulse.

As the pulse passes by, the
displacement of the coils is parallel to the direction of the propagation.

คลื่นที่ผิว (Surface waves)

อนุภาคตัวกลางเคลื่อนที่ (หรือสั่น) ทั้ง 2 แนว

- คลื่นผินน้ำ
- คลื่นแผ่นดินไหว

The elements at the surface move in nearly circular paths. Each element is displaced both horizontally and vertically from its equilibrium position.

The back-and-forth motion produced as P waves travel along the surface can cause the ground to buckle and fracture.

S waves cause the ground to shake up-and-down and sideways.

ฟังก์ชั่นคลื่น (Wave function)

At $t=0$, the shape of the pulse is given by $y=f(x)$.

At some later time t, the shape of the pulse remains unchanged and the vertical position of an element of the medium at any point P is given by $y=f(x-v t)$.

พิจารณาความสูงของคลื่นที่เวลา t_{1} และ t_{2}

$$
\begin{aligned}
& y\left(x_{1}, t_{1}\right)=f\left(x_{1} \pm v t_{1}\right) \\
& y\left(x_{2}, t_{2}\right)=f\left(x_{2} \pm v t_{2}\right)
\end{aligned}
$$

เมื่อคลื่นเคลื่อนที่ไป รูปทรงของคลื่นยังเหมือนเดิม

$$
y\left(x_{1}, t_{1}\right)=y\left(x_{2}, t_{2}\right)
$$

หรือ

$$
x_{1} \pm v t_{1}=x_{2} \pm v t_{2}
$$

พิจารณา ให้เวลาตอนเริ่มต้นเท่ากับศูนย์
 $x_{1}=x_{2}+v t \rightarrow t$ เพิ่ม x_{2} ต้องลด \rightarrow คลื่นไปทางง $-x$

ตัวอย่าง -1

คลื่นลูกหนึ่งเคลื่อนที่ไปทางขวาตามแนวแกน x ด้วยฟังก์ชั่นคลื่น

$$
y(x, t)=\frac{2}{(x-3.0 t)^{2}+1}
$$

จงพิจารณาฟังก์ชั่นคลื่นที่เวลา $t=0,1$ และ 2 วินาทีตามลำดับ โดย x และ y อยู่ ในหน่วยเซนติเมตร

สมการคลื่น (Wave equation)

พิจารณาคลื่นในเส้นเชือก จากกฎข้อ 2 ของนิวตัน
个

$$
\begin{aligned}
(d m) \ddot{y} & =T(\sin (\theta+\Delta \theta)-\sin \theta) \\
& \simeq T \Delta \theta
\end{aligned}
$$

ให้ μ เป็นมวลต่อหน่วยความยาว

$$
\begin{aligned}
(d m) & =\mu(\Delta x) \\
\mu(\Delta x) \ddot{y} & =T \Delta \theta
\end{aligned}
$$

หาค่า $\tan (\theta) \quad y$ ขึ้นอยู่กับ x และเวลา t
$\tan (\theta)=\frac{\partial y}{\partial x}$ หจากรึปปิิจารฌา ฌ เวลา เทั้น
ทำ Derivative เทียบ x
$\underset{\text { เทอมนี้ }=1}{\text { เิมเล็ก ๆ }} \rightarrow \frac{1}{\cos ^{2} \theta} \frac{d \theta}{d x}=\frac{\partial^{2} y}{\partial x^{2}}$

สมการคลื่น (Wave equation)

พิจารณาคลื่นในเส้นเชือก

แทนค่าไปในกฎข้อที่ 2 ของนิวตัน

$$
\begin{aligned}
\mu(\Delta x) \frac{\partial^{2} y}{\partial t^{2}} & =T \frac{\partial^{2} y}{\partial x^{2}}(\Delta x) \\
\frac{\mu}{T} \frac{\partial^{2} y}{\partial t^{2}} & =\frac{\partial^{2} y}{\partial x^{2}}
\end{aligned}
$$

y ควรอยู่ ในรูปของ $f(x \pm C t)$
C มีหน่วยเป็นความเร็ว $[\mathrm{m} / \mathrm{s}]$ เขียน C ด้วย $v=\sqrt{T / \mu}$

เราจะได้รูปทั่วไปของสมการคลื่น

$$
\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}=\frac{\partial^{2} y}{\partial x^{2}}
$$

ตัวอย่าง - 2

จงแสดงว่าฟังก์ชั่นคลื่นต่อไปนี้เป็นคำตอบที่เป็นไปได้ของสมการคลื่น โดยที่ b เป็นค่าคงที่

$$
\begin{aligned}
& \text { (a) } y(x, t)=\ln [b(x-v t)] \\
& \text { (b) } y(x, t)=e^{b(x-v t)} \\
& \text { (c) } y(x, t)=x^{2}+v^{2} t^{2}
\end{aligned}
$$

ตัวอย่าง - 2

ตัวอย่าง -3

เชือกเส้นหนึ่งมีมวล 0.3 kg และยาว 6 m (ตามรูป) ยึดเชือกด้านหนึ่งไว้กับกำแพง อีกด้านหนึ่งคล้องผ่านรอกและผูกไว้กับ มวล 2.0 kg จงหาความเร็วของคลื่นบน เชือกเส้นนี้

ตัวอย่าง -4

จากรูป เชือกสองเส้นผูกปมเชื่อมเข้าด้วยกัน แล้วผูกปลายที่เหลือเข้า กับจุดตรึง กำหนดให้มวลต่อหน่วยความยาวของเชือกทั้งสองเส้นเป็น

$$
\mu_{1}=1.4 \times 10^{-4} \mathrm{Kg} / \mathrm{m}, \mu_{2}=2.8 \times 10^{-4} \mathrm{Kg} / \mathrm{m}
$$

กำหนดความยาวของเชือกเส้นที่หนึ่งเป็น $L_{1}=3.0 \mathrm{~m}$ และ ของเชือก เส้นที่สอง $L_{2}=2.0 \mathrm{~m}$ และเชือกเส้นที่หนึ่งมีแรงตึงเท่ากับ 400 N ถ้า มีการส่งคลื่นดลจากจุดตรึงที่ปลายเชือกทั้งสองออกมากพร้อมกัน ให้ มีทิศทางวิ่งเข้ามาหาปม คลื่นดลจากปลาย ใดจะถึงปมของเชือกก่อน กัน

ตัวอย่าง - 4

การสะท้อนของคลื่นในเส้นเชือก (ปลายตรึง/ปิด)

การสะท้อนของคลื่นในเส้นเชือก (ปลายอิสระ/เปิด)

คลื่นรูปไซน์ (Sinusoidal wave)

The wavelength λ of a wave is the distance between adjacent crests or adjacent troughs.

ตำแหน่งของกลุ่มของ
อนุภาค ในเวลาหนึ่ง ๆ

The period T of a wave is the time interval required for the element to complete one cycle of its oscillation and for the wave to travel one wavelength.

ตำแหน่งของอนภาคตัว
หนึ่งในเวลาต่าง ๆ

คลื่นรูปไซน์ (Sinusoidal wave)

The wavelength λ of a wave is the distance between adjacent crests or adjacent troughs.

ตำแหน่งของกล่มของ อนุภาค ในเวลาหนึ่ง ๆ

$$
\begin{aligned}
& x+v t \text { คลื่นไปทางซ้าย }(-\mathrm{x}) \\
& x-v t \text { คลื่นไปทางขวา }(+\mathbf{x})
\end{aligned}
$$

พิจารณาที่เวลา $\mathrm{t}=0$

$$
\begin{aligned}
& y(x, 0)=A \sin (a x) \\
& y(0,0)=A \sin (a 0)=0
\end{aligned}
$$

$$
y\left(\frac{\lambda}{2}, 0\right)=A \sin \left(a \frac{\lambda}{2}\right) \underset{\uparrow}{=} 0
$$

$$
a=\frac{2 \pi}{\lambda} \longleftarrow{ }^{\text {สมการจะเป็น }} \begin{gathered}
\text { จริงก็ต่อเมื่อ }
\end{gathered}
$$

เราสามารถเขียนสมการคลื่นที่เวลา $t=0$

$$
y(x, 0)=A \sin \left(\frac{2 \pi}{\lambda} x\right)
$$

เราสามารถเขียนสมการคลื่นที่เวลา t ใด ๆ

$$
y(x, t)=A \sin \left(\frac{2 \pi}{\lambda}(x \pm v t)\right)
$$

คลื่นรูปไซน์ (Sinusoidal wave)

รูปแบบของสมการที่เราได้สามารถเป็นคำตอบของฟังก์ชั่นคลื่นได้

$$
\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}=\frac{\partial^{2} y}{\partial x^{2}} \quad \stackrel{\text { เป็นนนึ่งใน }}{\text { คำตอบใด้ }} y(x, t)=A \sin \left(\frac{2 \pi}{\lambda}(x \pm v t)\right)
$$

นิยาม
$k \equiv \frac{2 \pi}{\lambda}$ Angular wave number (wave number) บอกถึงจำนวน ของคลื่น ในความยาวหนึ่ง ๆ (ในที่นี้คือ 2π)
$\omega \equiv \frac{2 \pi}{T}=2 \pi f \quad$ Angular frequency เขียนให้ทั่วไปมากขึ้น เขียนฟังก์ชั่นคลื่นใหม่ได้ว่า $y(x, t)=A \sin (k x \pm \omega t)$ $k x \pm \omega t+\phi$ phase constant

คลื่นรูปไซน์ (Sinusoidal wave)

อัตราเร็วเฟส กับอัตราเร็วของอนุภาค ในตัวกลางไม่เหมือนกัน

เราสามารถหาความเร็วของคลื่นที่เคลื่อนที่ไปในตัวกลางได้โดย การพิจารณาการเคลื่อนที่ของตำแหน่งที่มีเฟสเท่ากัน

$$
k x_{0}=k x-\omega t
$$

$$
v=\frac{d x}{d t}
$$

$$
k \frac{d x}{d t}=\omega
$$

คลื่นรูปไซน์ (Sinusoidal wave)

ตัวอย่าง -5

มีฟังก์ชั่นคลื่นอยู่ 3 ฟังก์ชั่นคือ

$$
\begin{aligned}
& \text { (a) } y(x, t)=2 \sin (4 x-2 t) \\
& \text { (b) } y(x, t)=\sin (3 x-4 t) \\
& \text { (c) } y(x, t)=3 \sin (3 x-3 t)
\end{aligned}
$$

(1) จงเรียงลำดับคลื่นตามอัตราเร็วเฟส จากมากไปน้อย (2) จงเรียงลำดับอัตราเร็วสูงสุดของตัวกลาง จากมากไปน้อย

ตัวอย่าง -5

ตัวอย่าง -6

คลื่นในเส้นเชือกมีสมการการกระจัดของอนุภาคเส้นเชือก ในหน่วย เมตรเป็น

$$
y(x, t)=15 \sin \left(\frac{\pi}{16}(2 x-64 t)\right)
$$

จงหา
(1) อำพน (Amplitude)
(2) ความยาวคลื่น
(3) คาบ
(4) อัตราเร็วเฟส
(5) อัตราเร็วสูงสุดของอนุภาคตัวกลาง ในเส้นเชือกนี้
(6) อัตราเร็วของอนุภาคตัวกลางที่ตำแหน่ง 6 m ณ เวลา 0.25 วินาที
(7) อัตราเร่งของอนุภาคตัวกลางที่ตำแหน่ง 6 m ณ เวลา 0.25 วินาที

ตัวอย่าง -6

ตัวอย่าง -7

คลื่นรูปไซต์วิ่งไป ในทิศ $+x$ มีค่าอำพล (Amplitude) เท่ากับ 15 ซม. มีความยาวคลื่น 40 ซม. และมีความถี่ 8 เฮิร์ต ณ เวลา $t=0$ การกระ จัดของอนุภาค ณ ตำแหน่ง $x=0$ คือ 15 ซม.ตามรูป จงหา
(1) เลขคลื่น (k)
(2) คาบ
(3) ความถี่เชิงมุม
(4) อัตราเร็วเฟส
(5) ค่าคงที่ของเฟส (phase constant)
(6) ฟังก์ชั่นคลื่นของคลื่นนี้

ตัวอย่าง -7

พลังงานจลน์ของคลื่นในเส้นเชือก

$$
\wedge \wedge \sim 1^{\pi_{m} m_{n}=\sqrt{\frac{\pi}{n}}}
$$

พิจารณาพลังงานจลน์ของก้อนมวล $d m$ ที่แกว่งขึ้นลง

$$
\begin{array}{cc}
d E_{k}= & \frac{1}{2}(d m) v_{y}^{2} \longleftarrow \frac{\partial y}{\partial t}=-A k v \cos [k(x-v t)] \\
d m=\mu d x & =\frac{\lambda}{2} \\
E_{k}= & \frac{1}{2} \mu A^{2} k^{2} v^{2} \int_{0}^{\lambda} \cos ^{2} k(x-v t) \mathrm{d} x \\
\frac{2 \pi}{\lambda} \sqrt{\frac{T}{\mu}} & E_{0}= \\
\text { พลิงงา } \\
\text { wave }
\end{array}
$$

พลังงานจลน์ของคลื่น
1 wavelength

$$
\begin{aligned}
E_{k} & =\frac{A^{2} \pi^{2} T}{\lambda} \\
& =\frac{1}{4} \mu \omega^{2} A^{2} \lambda
\end{aligned}
$$

พลังงานศักย์ของคลื่นในเส้นเชือก

พลังงานศักย์ขึ้นอยู่กับระยะยืดของเชือก จากรูปด้านขวา เชือกจะยืดออกจากระยะ เดิมเท่ากับ $\sqrt{d x^{2}+d y^{2}}-d x$

$$
\begin{aligned}
\sqrt{d x^{2}+d y^{2}}-d x & =d x \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}-d x \\
& \approx d x\left(1+\frac{1}{2}\left(\frac{d y}{d x}\right)^{2}\right)-d x \\
& \approx \frac{1}{2}\left(\frac{d y}{d x}\right)^{2} d x
\end{aligned}
$$

พลังงานศักย์หาได้จาก

$$
d U=T \cdot \frac{1}{2}\left(\frac{d y}{d x}\right)^{2} d x
$$

แทนค่า

$$
y(x, t)=A \sin [k(x-v t)]
$$

และอินทิเกรต 0 ถึง λ
พลังงานศักย์ของคลื่น
1 wavelength

$$
\begin{aligned}
U & =\frac{A^{2} \pi^{2} T}{\lambda} \\
& =\frac{1}{4} \mu \omega^{2} A^{2} \lambda
\end{aligned}
$$

เท่ากับพลังงานจล์ของ คลื่น 1 wavelength

พลังงานของคลื่นในเส้นเชือก

คลื่นที่เคลื่อนที่ไป Traveling wave

พิจารณาพลังงาน ณ ขณะหนึ่ง ๆ

$$
\begin{aligned}
E_{t o t a l} & =E_{k}+U \\
& =\frac{2 A^{2} \pi^{2} T}{\lambda} \\
& =\frac{1}{2} \mu \omega^{2} A^{2} \lambda
\end{aligned}
$$

คลื่นสถิต
 Standing wave

พิจารณาพลังงาน ณ ขณะหนึ่ง ๆ เลือกขณะที่คลื่นกำลังจะ เคลื่อนที่กลับทิศ (บนสดกลับลง ล่าง หรือล่างสุดจะขึ้นบน) คลื่น จะมีแต่พลังงานศักย์เท่านั้น

$$
E_{t o t a l}=\frac{A^{2} \pi^{2} T}{\lambda}
$$

อัตราการส่งผ่านพลังงานของคลื่นในเส้นเชือก

กำลังเฉลี่ย หรืออัตราการส่งผ่านพลังงานเฉลี่ย (ทั้งพลังงานจลน์ และ พลังงานศักย์)

$$
\begin{aligned}
P=\frac{E}{t} & =\frac{2 A^{2} \pi^{2} T}{\lambda}\left(\frac{v}{\lambda}\right) \\
& =\frac{2 A^{2} \pi^{2} T v}{\lambda^{2}} \\
P=\frac{E}{t} & =\frac{1}{2} \mu \omega^{2} A^{2} \lambda\left(\frac{v}{\lambda}\right) \\
& =\frac{1}{2} \mu v \omega^{2} A^{2}
\end{aligned}
$$

ตัวอย่าง - 8

ลวดเส้นหนึ่งมีมวลต่อหน่วยความยาว $525 \mathrm{~g} / \mathrm{m}$ มีความตึง 45 N ถ้าปล่อย คลื่นที่มีความถี่ 120 Hz และมีอำพน 8.5 mm ให้เคลื่อนที่บนเส้นลวด คลื่นจะส่งผ่านพลังงานด้วยอัตราเท่าไหร่

ตัวอย่าง - 9

จงพิสูจน์กฎการอนุรักษ์พลังงาน ในกรณีที่คลื่นสองขบวนวิ่งสวนทางกัน แล้วเกิดเป็นคลื่นสถิต

คลื่นเสียง

คลื่นเสียง

Bulk Modulus

The cube undergoes a change in volume but no change in shape.

คลื่นเสียง

อัตราเร็วของคลื่น

$$
v=\sqrt{\frac{\text { elastic property }}{\text { inertial property }}}
$$

$\sqrt{\frac{T}{\mu}}$

$$
\sqrt{\frac{B}{\rho}}
$$

ความเข้มเสียงและเดซิเบล (Intensity \& Decibel)

ความเข้มเสียงนิยามโดย

$$
\begin{aligned}
& I=\frac{P}{A} \text { อัตราการส่งผ่านพลังงาน } \\
& I=\frac{1}{2} \rho v \omega^{2} s_{\max }^{2}
\end{aligned}
$$

ระดับเสียงนิยามโดย

$$
\begin{aligned}
& \beta=10 \log \frac{I}{I_{0}} \\
& I_{0}=1.0 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

ตัวอย่าง - 10

เครื่อจจักรสองเครื่องวางห่างจากคนทำงานเป็นระยะทางเท่ากัน โดยแต่ละ เครื่อง ให้ความเข้มเสียงบริเวณที่คนทำงานเท่ากับ $2.0 \times 10^{-7} \mathrm{~W} / \mathrm{m}^{2}$
(1) จงหาระดับเสียงที่คนทำงานจะได้ยินเมื่อเครื่องจักรเครื่องที่หนึ่งทำงาน
(2) จงหาระดับเสียงที่คนทำงานจะได้ยินเมื่อเครื่องจักรทั้งสองเครื่อง ทำงาน

ดอปเปลอร์ (Doppler)

เมื่อต้นกำเนิดเสียงและผู้สังเกตมีการเคลื่อนที่สัมพัทธ์กัน ผู้สังเกตจะได้รับ คลื่นที่มีความตี่ต่างไปจากการการที่ต้นกำเนิดเสียงและผู้สั้งเกตอยู่นิ่ง

$$
\begin{aligned}
& v=\text { ความเร็วเสียง } \\
& v_{o}=\text { ความเร็วของผู้สังเกต } \\
& v_{s}=\text { ความเร็วของแหล่งกำเนิด }
\end{aligned}
$$

แหล่งกำเนิดเสียงอยู่นิ่ง

Doppler: Source is moving

Moving source

Stationary observer

- คือ Source วิ่งเข้าหาเรา
+ คือ Source วิ่งออกจากเรา

$$
\begin{aligned}
f^{\prime} & =\frac{v}{\lambda^{\prime}} \\
& =\frac{v}{\lambda \mp \frac{v_{s}}{f}} \\
& =f \frac{v}{\lambda f \mp v_{s}} \\
& =f \frac{1}{1 \mp \frac{v_{s}}{v}}
\end{aligned}
$$

Doppler: Observer is moving

ความยาวคลื่นไม่เปลี่ยนแปลง

+ คือเราวิ่งเข้าหา Source
- คือเราวิ่งออกจาก Source

$$
f^{\prime}=\frac{v \pm v_{0}}{\lambda}
$$

$$
=f \frac{v \pm v_{0}}{v}
$$

$$
=f\left(1 \pm \frac{v_{0}}{v}\right)
$$

(b)

Doppler: General case

Moving source

$$
f^{\prime}=f\left(\frac{v \pm v_{0}}{v \mp v_{s}}\right)
$$

ดูสถานการณ์ให้ดี อะไรวิ่งยังไง ใช้ Common sense เวลา Source วิ่ง ความถี่ที่เข้าหาเราเป็นอย่างไร เวลาเราวิ่งเข้าหา Source ความถี่จะเป็นอย่างไร

F_{s} คือ Source วิ่งเข้าหาเรา
$+\mathrm{v}_{\mathrm{s}}$ คือ Source วิ่งออกจากเรา
$+v_{0}$ คือเราวิ่งเข้าหา Source
$-v_{o}$ คือเราวิ่งออกจาก Source

ตัวอย่าง -11

นักประดาน้ำกลุ่ม ก ว่ายน้ำไปด้วยความเร็ว $8 \mathrm{~m} / \mathrm{s}$ และปล่อยคลื่นโซน่าร์ (SONAR, SOund Navigation And Ranging) ด้วยความถี่ 1400 Hz ให้ความเร็ว ในการเคลื่อนที่ของเสียง ใต้น้ำเป็น 1533 Hz จงหาว่า
(1) เมื่อมีกลุ่มนักประดาน้ำ ข ว่ายน้ำเข้าหากลุ่ม ก ด้วยความเร็ว $9 \mathrm{~m} / \mathrm{s}$ ความถี่ของคลื่นโซน่าร์ที่กลุ่ม ข จะรับได้มีค่าเท่า ใด
(2) หากทั้งสองกลุ่มคลาดกัน และว่ายออกห่างจากกัน ความถี่ของคลื่น โซน่าร์ที่กลุ่ม ข จะรับได้มีค่าเท่า ใด

Supersonic speed

สูตรของ Doppler จะไม่สามารถใช้ได้เมื่อ vo,vs เคลื่อนที่เร็วกว่าคลื่น
-พิจารณาเมื่อ Observer เคลื่อนที่เร็วกว่าเสียง
-พิจารณาเมื่อ Source เคลื่อนที่เร็วกว่าเสียง \rightarrow Supersonic
Mach number $M \equiv \frac{v_{s}}{v}$

Zone of silence

จาก Mach cone

Zone of action

$$
\sin \theta=\frac{v t}{v_{s} t}=\frac{1}{M}
$$

เมื่อขอบของ Mach cone สัมผัสกับพื้นผิว \rightarrow Sonic boom

More on doppler

จากที่เราบันทึก เราสามารถหาค่า T, v_{s}, R ประยุกต์ใช้กับงานด้านดาราศาสตร์ (ต้องการ Special relativity)

