Kinetic theory of gas

- Molecular model of an ideal gas
- Molar specific heat of an ideal gas
- The equipartition of energy
- Van der Waals forces (Optional)
- Distribution of molecular speeds
- Mean free path

Molecular model of an ideal gas

We will discuss the link between macroscopic and microscopic of an idea gas. In Kinetic theory (Newtonian mechanics), we consider that

- Gas consists of identical "point" molecules of mass m.
- No interaction between molecules, except when they collide.
- Random motion.
- Collisions with wall are elastic.

Molecular model of an ideal gas

One molecule of the gas moves with velocity $\overrightarrow{\mathbf{v}}$ on its way toward a collision with the wall.

Molecular model of an ideal gas

Apply the impulse-momentum theorem:

$$
\begin{aligned}
& \bar{F}_{i, \text { on molecule }}=-\frac{2 m_{0} v_{x i}}{\Delta t}=-\frac{m_{0} v_{x i}^{2}}{d} \\
& \qquad \Delta t=\frac{2 d}{v_{x i}} \begin{array}{l}
\text { Interval between 2 } \\
\text { collisions with the } \\
\text { same wall }
\end{array}
\end{aligned}
$$

By Newton's third law, the component of the long term average force exerted by the molecule on the wall:

$$
\bar{F}_{i, \text { on wall }}=\frac{m_{0} v_{x i}^{2}}{d}
$$

Consider a very large number of molecules:

$$
F=\frac{m_{0}}{d} \sum_{i=1}^{N} v_{x i}^{2} \quad \begin{gathered}
\text { Average force is the same } \\
\text { over any time interval }
\end{gathered}
$$

Molecular model of an ideal gas

Consider the average value of the square of the x component of the velocity for N molecules:

$$
\sum_{i=1}^{N} v_{x i}^{2}=N \overline{v_{x}^{2}}
$$

Substitute it back to the force we get before

$$
F=\frac{m_{0}}{d} N \overline{v_{x}^{2}}
$$

Consider now the three components of velocity (for each molecule)

$$
\text { Average } \rightarrow \overline{v_{i}^{2}}=\overline{v^{2}}=\overline{v_{x}^{2}}+\overline{v_{y i}^{2}}+\overline{v_{z}^{2}} v_{z i}^{2} .
$$

Molecular model of an ideal gas

Consider the total pressure exerted on the wall:

$$
\begin{aligned}
P=\frac{F}{A}=\frac{F}{d^{2}} & =\frac{1}{3}\left(\frac{N}{V}\right) m_{0} \overline{v^{2}} \\
& =\frac{2}{3}\left(\frac{N}{V}\right)\left(\frac{1}{2} m_{0} \overline{v^{2}}\right)
\end{aligned} \text { Average K.E. }
$$

You now have the link between macroscopic world (pressure) with microscopic world (K.E.) of the gas molecules. What can you tell from this equation? Does the pressure depend on the type of gas?

Molecular model of an ideal gas

Molecular interpretation of temperature

$$
\frac{1}{2} m_{0} \overline{v^{2}}=\frac{3}{2} k_{B} T
$$

What can you tell from this equation?

Theorem of equipartition of energy

Each degree of freedom contributes $\frac{1}{2} k_{B} T$ to the energy of a system, where possible degrees of freedom are those associated with translation, rotation, and vibration of molecules.

Molecular model of an ideal gas

The total kinetic energy (N molecules):

$$
\begin{aligned}
K_{t o t, t r a n s} & =N\left(\frac{1}{2} m_{0} \overline{v^{2}}\right) \\
& =\frac{3}{2} N k_{B} T \\
& =\frac{3}{2} n R T
\end{aligned}
$$

root-mean-square (rms) speed:

$$
v_{r m s}=\sqrt{\frac{3 k_{b} T}{m_{0}}}=\sqrt{\frac{3 R T}{M}}
$$

This expression shows that, at a given temperature, lighter molecules move faster, on the average, than do heavier molecules.

Example

What is the total translational kinetic energy of Neon gas with mass 1 gram at $30^{\circ} \mathrm{C}$ (Atomic mass of Neon is 20.18u)

Molar specific heat of an ideal gas

We will review this topic again when we talk about the first law of Thermodynamics.

Consider an ideal gas undergoing several processes such that the change in temperature is $\Delta T=T_{f}-T_{i}$. We normally consider 2 cases:
-Constant volume

- Constant pressure

Start with simplest case when energy is added to the ideal monatomic gas:

$$
E_{\mathrm{int}}=K_{\mathrm{tot}, \text { trans }}=\frac{3}{2} n R T=\frac{3}{2} N k_{B} T
$$

What will happen to the system?

Molar specific heat of an ideal gas

Along the constant-pressure path, part of the energy transferred in by heat is transferred out by work.

Molar specific heat of an ideal gas

Along the constant-pressure path, part of the energy transferred in by heat is transferred out by work.

In case of constant volume:

$$
C_{v}=\frac{1}{n} \frac{d E_{i n t}}{d T}
$$

$$
\text { and } Q=\Delta E_{\text {int }}=n C_{v} \Delta T
$$

So we will have

In case of constant pressure:

Molar specific heat of an ideal gas

Table 21.2 Molar Specific Heats of Various Gases
Molar Specific Heat ($\mathrm{J} / \mathrm{mol} \cdot \mathrm{K})^{\text {a }}$

${ }^{\text {a }}$ All values except that for water were obtained at 300 K .

The equipartition of energy

Our assumption:

$$
\frac{1}{2} m_{0} \overline{v^{2}}=\stackrel{\substack{\text { Translati } \\ \downarrow \\ 2}}{\substack{\text { R }}}
$$

The internal energy of a gas, however, includes contributions from the translational, vibrational, and rotational motion of the molecules. Each degree of freedom contributes, on average,

$$
\frac{1}{2} k_{B} T
$$

Classical equipartition of energy

The equipartition of energy (diatomic molecule)

Vibrational motion along the molecular axis

The equipartition of energy

	Monatomic	Linear molecules	Non-linear molecules	Energy multiplication
การเลื่อน การหน่ง	3	3	3	$\frac{1}{2} k_{B} T$
การสุน่น	0	2	3	$\frac{1}{2} k_{B} T$

Try $\mathrm{H}_{2} \mathrm{O}$:

The equipartition of energy

For low temperatures, the diatomic hydrogen gas behaves like a monatomic gas. As the temperature rises to room temperature, its molar specific heat rises to a value for a diatomic gas, consistent with the inclusion of rotation but not vibration. For high temperatures, the molar specific heat is consistent with a model including all types of motion.

Ideal gas - real gas

The Van der Waals equation is an equation of state that generalizes the ideal gas law based on plausible reasons that real gases do not act ideally. It is a modified version of an ideal gas law by considering:
(1) Interaction between gas molecules
(2) Gas is not a point-like particle, volume is

Van der Waals equation

Consider n mole of gas at the pressure P, Volume V and temperature T (Kelvin).

Van der Waals equation
If $N \ll V$ we will get ideal gas equation.

Van der Waals equation

Arrange the equation, we will get

$$
P V^{3}-N\left(k_{B} T+P b\right) V^{2}+N^{2} a V-N^{3} a b=0
$$

Van der Waals equation

$$
V^{\prime}=V-N b
$$ a and b are Empirical constants (also depend on type of gas).

$$
P^{\prime} V^{\prime}=N k_{B} T
$$

$$
P^{\prime}=P+a\left(\frac{N}{V}\right)^{2}
$$

The constant b is a correction for finite molecular size and its value is the volume of one mole of the atoms or molecules.

The constant a provides a correction for the intermolecular forces.

Van der Waals equation

liquid-gas phase transition occurs in this area. This transition is accompanied by a significant change in the volume V at constant pressure P and constant temperature T.

Distribution of molecular speeds

Back to what we discuss before:

$$
\frac{1}{2} m_{0} \overline{v^{2}}=\frac{3}{2} k_{B} T
$$

$$
v_{r m s}=\sqrt{\frac{3 k_{b} T}{m_{0}}}=\sqrt{\frac{3 R T}{M}}
$$

Table 21.1 Some Root-Mean-Square (rms) Speeds

Gas	Molar Mass $(\mathbf{g} / \mathbf{m o l})$	$\boldsymbol{v}_{\text {rms }}$ at $\mathbf{2 0}{ }^{\circ} \mathbf{C}(\mathbf{m} / \mathbf{s})$	Gas	Molar Mass $(\mathbf{g} / \mathbf{m o l})$	$\boldsymbol{v}^{\boldsymbol{v}_{\text {rms }}} \mathbf{2 0}{ }^{\circ} \mathbf{C}(\mathbf{m} / \mathbf{s})$
H_{2}	2.02	1902	NO	30.0	494
He	4.00	1352	O_{2}	32.0	478
$\mathrm{H}_{2} \mathrm{O}$	18.0	637	CO_{2}	44.0	408
Ne	20.2	602	SO_{2}	64.1	338
$\mathrm{~N}_{2}$ or CO	28.0	511			

Example

A 7.00-L vessel contains 3.50 moles of gas at a pressure of $1.60 \times 10^{6} \mathrm{~Pa}$. Find (a) the temperature of the gas and (b) the average kinetic energy of the gas molecules in the vessel. (c) What additional information would you need if you were asked to find the average speed of the gas molecules?

Distribution of molecular speeds

Thus far, we have considered only average values of the energies of all the molecules in a gas and have not addressed the distribution of energies among individual molecules.

Distribution of molecular speeds

The fundamental expression that describes the distribution of speeds of N gas molecules is

$$
N_{v}=4 \pi N\left(\frac{m_{0}}{2 \pi k_{B} T}\right)^{3 / 2} v^{2} e^{-m_{0} v^{2} / 2 k_{B} T}
$$

Maxwell-Boltzmann speed distribution

 function. If N is the total number of molecules, the number of molecules with speeds between v and $v+d v$ is $d N=N_{v} d \nu$.

Distribution of molecular speeds

The total area under either curve is equal to N, the total number of molecules. In this case, $N=10^{5}$.

Distribution of molecular speeds

Distribution of molecular speeds

Table B. 6 Gauss's Probability Integral and Other Definite Integrals

$\int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}}$
$I_{0}=\int_{0}^{\infty} e^{-a x^{2}} d x=\frac{1}{2} \sqrt{\frac{\pi}{a}} \quad$ (Gauss's probability integral)
$I_{1}=\int_{0}^{\infty} x e^{-a x^{2}} d x=\frac{1}{2 a}$
$I_{2}=\int_{0}^{\infty} x^{2} e^{-a x^{2}} d x=-\frac{d I_{0}}{d a}=\frac{1}{4} \sqrt{\frac{\pi}{a^{3}}}$
$I_{3}=\int_{0}^{\infty} x^{3} e^{-a x^{2}} d x=-\frac{d I_{1}}{d a}=\frac{1}{2 a^{2}}$
$I_{4}=\int_{0}^{\infty} x^{4} e^{-a x^{2}} d x=\frac{d^{2} I_{0}}{d a^{2}}=\frac{3}{8} \sqrt{\frac{\pi}{a^{5}}}$
$I_{5}=\int_{0}^{\infty} x^{5} e^{-a x^{2}} d x=\frac{d^{2} I_{1}}{d a^{2}}=\frac{1}{a^{3}}$
$I_{2 n}=(-1)^{n} \frac{d^{n}}{d a^{n}} I_{0}$
$I_{2 n+1}=(-1)^{n} \frac{d^{n}}{d a^{n}} I_{1}$

ตัวอย่าง

Nine particles have speeds of $5.00,8.00,12.0,12.0,12.0,14.0$, $14.0,17.0$, and $20.0 \mathrm{~m} / \mathrm{s}$. Find $v_{a v g}, v_{r m s}, v_{m p}$

ตัวอย่าง

A $0.500-\mathrm{mol}$ sample of hydrogen gas is at 300 K .
-Find the average speed, the rms speed, and the most probable speed of the hydrogen molecules.
-Find the number of molecules with speeds between $400 \mathrm{~m} / \mathrm{s}$ and $401 \mathrm{~m} / \mathrm{s}$.

Mean free path

The mean free path, of a molecule is the average distance that a molecule travels before colliding with another molecule. It is given by

$$
\lambda=\frac{1}{\sqrt{2} \pi d^{2}(N / V)}
$$

where d is the diameter of the molecule and N / V is the number of molecules per unit volume. The number of collisions that a molecule makes with other molecules per unit time, or collision frequency f, is given by $f=v_{\text {avg }} / \lambda$

Mean free path (How to prove?)

Mean free path (How to prove?)

Mean free path (How to prove?)

Example

If the diameter of an oxygen molecule is $2.00 \times 10^{-10} \mathrm{~m}$, (a) find the mean free path of the molecules in a scuba tank that has a volume of 12.0 L and is filled with oxygen at a gauge pressure of 100 atm at a temperature of $25.0^{\circ} \mathrm{C}$. What is the average time interval between molecular collisions for a molecule of this gas?

