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Molecular model of an ideal gas

We will discuss the link between macroscopic and microscopic

of an idea gas. In Kinetic theory ( Newtonian mechanics ), we
consider that

e (5as consists of identical “point” molecules of mass m.

e No Interaction between molecules, except when they collide.
e Random motion.

e Collisions with wall are elastic.
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Molecular model of an ideal gas

One molecule of the gas
moves with velocity v on

1ts way toward a collision -y N
N\
with the wall. AN
The molecule’s x <
component of \\\

b, momentum 1is AN
reversed, whereas >
its y component ///
remains d

| 7/

< unchanged. 7
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Molecular model of an ideal gas

Apply the impulse-momentum theorem:

2
7 o 2moUg; MU,
;.,on molecule — At F

9 Interval between 2
— — | collisions with the
Uy same wall

By Newton's third law, the component of the long term average

force exerted by the molecule on the wall:

2

3 i.on wall — F

At

Consider a very large number of molecules:
__ Mo 2 Average force is the same

d “ - Tt over any time interval
1=
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Molecular model of an ideal gas

Consider the average value of the square of the x component of

the velocity for N molecules:
N

Ufn; — N@
i=1
Substitute it back to the force we get before

F:%N@

Consider now the three components of velocity
(for each molecule)

2 2 2 2

Ui = Vg T Uy 1+ Uiy
2 2 L 2 1 a2

Average — v = Vg T U, + V3

02 — 32 4_Ass.um|c.>t|on ﬁhat gas
X motion IS an ISotropic
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Molecular model of an ideal gas

Consider the total pressure exerted on the wall:

p_F_F 1 (N) —
= —= — = — —_ mofU
A d- 3V / Average K.E.

()

You now have the link between macroscopic world (pressure)
with microscopic world (K.E.) of the gas molecules. What can
you tell from this equation”? Does the pressure depend on the
type of gas”?
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Molecular model of an ideal gas

Molecular interpretation of temperature

1 —- 3
§m0112 — §kBT

What can you tell from this equation?
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Theorem of equipartition of energy

Each degree of freedom contributes EkBTtO the energy of a

system, where possible degrees of freedom are those
associated with translation, rotation, and vibration of molecules.
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Molecular model of an ideal gas

The total kinetic energy (N molecules):
1

Ktot,trans — N(§m0?}_2)
3
= —NkpT
SR
3
root-mean-square (rms) speed:
., 3k T [3RT
N me VM

This expression shows that, at a given temperature, lighter
molecules move faster, on the average, than do heavier
molecules.
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Example

What is the total translational kinetic energy of Neon gas with
mass 1 gram at 30°C (Atomic mass of Neon is 20.18u)
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Molar specific heat of an ideal gas

We will review this topic again when we
talk about the first law of Thermodynamics.

Isotherms

Consider an ideal gas undergoing several
processes such that the change in
temperature is AT = 1, — T;. We normally

T+ AT .
a consider 2 cases:

v eConstant volume
e Constant pressure

Start with simplest case when energy is added to the ideal
monatomic gas:

3 3
Eint = Ktot trans = 5 R = SNkl

What will happen to the system?
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Molar specific heat of an ideal gas

For the constant-volume
path, all the energy input
goes into increasing the
internal energy of the gas
because no work is done.

P
p=const.
P1.V1, Ty P1. V2, Ts
Isotherms
T+ AT
T
l V V=const.

Along the constant-pressure
path, part of the energy
transferred in by heat is
transferred out by work.

P1.V1. Ty P2,V T
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Molar specific heat of an ideal gas

For the constant-volume In case of constant volume:
path, all the energy input

goes into increasing the

internal energy of the gas 1 dEznt
p because no work is done. C —

Y n dT

and Q = AL, . =nC AT
So we will have

Isotherms

T+ AT
T

v

Along the constant-pressure In case of constant pressure.
path, part of the energy

transferred in by heat is
transferred out by work.
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Molar specific heat of an ideal gas

EL VAP Molar Specific Heats of Various Gases
Molar Specific Heat ( J/mol - K)*

Gas Cp Cy Y = Cp/Cy

Monatomic gases o

He 20.8 12.5 L67  Predictions based
Ar 20.8 12.5 1.67

Ne 20.8 2. 164 on the model for

K 20.8 12.3 1.69 .

I molar specific heat
tatomic gases . .
H, 28.8 20.4 141 agree quite well with

N. 29.1 20.8 1.40 .

()i, 99.4 91.1 140 the behavior of

CO 29.3 21.0 1.40 -

cl, 34.7 95.7 1.35 monatomllc gases,
Polyatomic gases bUt ﬂOt Wlth the

CO. 37.0 28.5 1.30 :

S0, 0.4 314 5 Pehavior of complex
H,0O 35.4 27.0 1.30 g ases

CH, 35.5 27.1 1.81 '

* All values except that for water were obtained at 300 K.
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The equipartition of energy

our assumption: Iranslational IN 3 dimensions

1 — 3
§m0112 — §]€'BT

The internal energy of a gas, however, includes contributions
from the translational, vibrational, and rotational motion of the
molecules. Each degree of freedom contributes, on average,

1
—kpT
5 KB

Classical equipartition of energy
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The equipartition of energy (diatomic molecule)

Translational motion of Rotatm.nal motion about Vibrational motion along
the various axes

the center of mass the molecular axis
z

<l -

Z

@ | J
e D" @

f b
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The equipartition of energy

Linear Non-linear Energy
molecules molecules multiplication

Monatomic

N1SLaY
AILTIN

N1SHYUY

&
NN9dU

Try H20:
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The equipartition of energy

The horizontal scale is logarithmic.

T T T TTTT] T T T TTTT] T T T TTT]
30 TR
2
o5 |- Hydrogen liquefies Vibration |  _
ool e e =R
= 2 -2
é Rotation
= 15 —
S| —_ §R
& I 2
10 | —
Translation
b _
0 L1 1 11lllly L1 Ll L 1 100l

10 20 50 100 200 500 1000 2000 5000 10000

Temperature (K)

For low temperatures, the diatomic hydrogen gas behaves like a
monatomic gas. As the temperature rises to room temperature, its molar
specific heat rises to a value for a diatomic gas, consistent with the
inclusion of rotation but not vibration. For high temperatures, the molar
specific heat is consistent with a model including all types of motion.

N. Srimanobhas; Kinetic theory of gas



Ideal gas - real gas

The Van der Waals equation is

an equation of state that
generalizes the ideal gas

law based on plausible reasons
that real gases do not act ideally. It
IS @ modified version of an ideal
gas law by considering:

(1) Interaction between gas
molecules

(2) Gas is not a point-like particle,
volume is
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Van der Waals equation

Consider n mole of gas at the pressure P, Volume V and
temperature 1" (Kelvin).

van der Waals curves (:(')2

g]ﬁy \,OC(_- 2 V/ — V L Nb
R / N V

A

N = NAn

| Van der Waals eqguation

: f N << V we will get
) S 1 , ideal gas equation.

1 Y 1.5 2 25 3 3.5
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Van der Waals equation
Arrange the equation, we will get

PV3 — N(kgT + Pb)V? + N?aV — N2ab = 0

’ van der Waals curves G()
” x 10 2

1.8}
70°C

p/Pa
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Van der Waals equation
a and b are Empirical constants (also

I __ —
VV =V - Nb depend on type of gas).
P'V' = NkgT
A The constant a provides a correction for
N 2 the intermolecular forces.
P/ — P —+ a (V)

: b
The constant b is a correction for Q Q
finite molecular size and its value H Q

IS the volume of one mole of the

atoms or molecules.
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Van der Waals equation

7 Van der Waals curves CO,
2)(10 T 2! T
1.8
g | v
a s°
1.6H ¢'
4
141
1.2} L T
liquid-gas phase transition
'k occurs in this area. This
< transition iIs accompanied by a
08k significant change in the
p
© volume V at constant pressure
0E __g P and constant temperature 1.
04 1 : 1 1 1 1
1 Vv 1.0 2 2.5 3 3.5
© V/m3 x 10~
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Distribution of molecular speeds

Back to what we discuss before:

1
—m
2

V2 =

3
—kpT
5 KB

U'rms T

3koT

mo

SRT
M

IELISVAREY Some Root-Mean-Square (rms) Speeds

Molar Mass Molar Mass
Gas (g/mol) at 20°C (m/s) Gas (g/mol) at 20°C (m/s)
H, 2.02 NO 30.0 494
He 4.00 O, 32.0 478
H,O 18.0 CO, 44.0 408
Ne 20.2 SO, 64.1 338
N, or CO 28.0
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Example

A 7.00-L vessel contains 3.50 moles of gas at a pressure of
1.60 x 106 Pa. Find (a) the temperature of the gas and (b) the
average kinetic energy of the gas molecules in the vessel. (¢)
What additional information would you need if you were asked
to find the average speed of the gas molecules?
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Distribution of molecular speeds

Thus far, we have considered only average values of the
energies of all the molecules in a gas and have not addressed
the distribution of energies among individual molecules.

molecular beam

f2B-cci=nC=.com

vacuum chamber
particle detector

collimator

nelical grooved drum

effusinn oven motor 0

https://www.tec-science.com/thermodynamics/kinetic-theory-of-gases/determination-of-the-velocity-distribution-in-a-gas/
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Distribution of molecular speeds

The fundamental expression that describes the distribution of
speeds of /N gas molecules is

3/2
Ny, =47 N il p2e~mov/2knT
A 27T]€BT

The number of molecules
having speeds ranging from v

Maxwell-Boltzmann speed distribution e i
. : N he tan rectangle, N, dv.

function. |f N is the total number of "-’

molecules, the number of molecules with g

speeds betweenvand v+ dvis
dN = N,dv.

U

dvy

(4

dv

N. Srimanobhas; Kinetic theory of gas



Distribution of molecular speeds

The total area under either curve is Note that v, > Uy55 > Upyp,
equal to N, the total number of

, e N = 105 o .
molecules. In this case, NV = 107, 7 The speed distribution function

for 105 nitrogen molecules at
300 K and 900 K.
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40
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Distribution of molecular speeds

The number of molecules

having speeds ranging from v

to v + dv cquals the arca of
N the tan rectangle, N, dv.
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Distribution of molecular speeds

IELISHEHEE  Gauss’s Probability Integral and Other Definite Integrals

n!

an-{-l

o0
J x" e ™ dx =
0

Jo
(" e 1
L= | xe™ dx=—
JO 2@
- ) dl, 1
Igz(xge_‘”“ dx———():— 13
Jo da 4\ a
) : dI 1
Ig=(x?’e_‘”“ dx = — —— =
Jo da 2a*
B ) d* 1 3
14—(9648_“’“ dx = L == 15
Jo da® 8 NV a
” : a*I, 1
Iy =| x> ™ dx= =
; JO dd2 Cl?)
dn
L, = (—1)" I
2n ( ) ddn 0
dn
Ly, 1 = (_l)n da" I,
a
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AIDEY
Nine particles have speeds of 5.00, 8.00, 12.0, 12.0, 12.0, 14.0,
14.0, 17.0, and 20.0 m/s. Find Vavgy Urmsy Ump
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AIDEY

A 0.500-mol sample of hydrogen gas is at 300 K.

o[ind the average speed, the rms speed, and the most
probable speed of the hydrogen molecules.

eind the number of molecules with speeds between 400 m/s
and 401 m/s.
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Mean free path

The mean free path, of a molecule is
the average distance that a
molecule travels betore colliding
with another molecule. It is given by

1

A= V2rd2(N/V)

where d is the diameter of the
molecule and N/V is the number of
molecules per unit volume. The
number of collisions that a molecule
makes with other molecules per unit
time, or collision frequency f, is
given by f = v, /4
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Mean free path (How to prove?)

-

i
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Actual
collision

Equivalent
collision



Mean free path (How to prove?)
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Mean free path (How to prove?)
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Example

It the diameter of an oxygen molecule is 2.00 x 10-19m, (a) find the
mean free path of the molecules in a scuba tank that has a volume
of 12.0 L and is filled with oxygen at a gauge pressure of 100 atm at
a temperature of 25.0°C. What is the average time interval between

molecular collisions for a molecule of this gas?
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