The first law of thermodynamics

- Heat and internal energy
- Specific heat
- Latent heat
- Work and heat in thermodynamic processes
- The first law of thermodynamics
- Some applications of the first law of thermodynamics
- Energy transfer mechanisms in thermal processes

Heat and internal energy

The caloric theory is an obsolete scientific theory that heat consists of a self-repellent fluid called caloric that flows from hotter bodies to colder bodies.

Nowadays, in thermodynamics, Heat is defined as a process of transferring energy across the boundary of a system because of a temperature difference between the system and its surroundings. It is also the amount of energy Q transferred by this process.

Internal energy is all the energy of a system that is associated with its microscopic components -atoms and molecules-when viewed from a reference frame at rest with respect to the center of mass of the system.

The Mechanical Equivalent of Heat

The falling blocks rotate the paddles, causing the temperature of the water to increase.

Joule's experiment

Specific heat

The heat capacity C of a particular sample is defined as the amount of energy needed to raise the temperature of that sample by $1^{\circ} \mathrm{C}$.

$$
C \equiv \frac{Q}{\Delta T}
$$

The specific heat c of a substance is the heat capacity per unit mass.

$$
c \equiv \frac{Q}{m \Delta T}
$$

Table 20.1	Specific Heats of Some Substances at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ and Atmospheric Pressure Specific Heat $\left(\mathrm{J} / \mathbf{k g} \cdot{ }^{\circ} \mathbf{C}\right)$	Substance	
Substance		Other solids	Specific Heat $\left(\mathbf{J} / \mathbf{k g} \cdot{ }^{\circ} \mathbf{C}\right)$
Elemental solids	900	Brass	
Aluminum	1830	Glass	380
Beryllium	230	Ice $\left(-5^{\circ} \mathrm{C}\right)$	837
Cadmium	387	Marble	2090
Copper	322	Wood	860
Germanium	129	Liquids	1700
Gold	448	Alcohol $($ ethyl $)$	
Iron	128	Mercury	2400
Lead	703	Water $\left(15^{\circ} \mathrm{C}\right)$	140
Silicon	234	Gas	4186
Silver		Steam $\left(100^{\circ} \mathrm{C}\right)$	
			2010

Note:
The heat capacity of most systems is not constant (though it can often be treated as such). It depends on the temperature, pressure, and volume of the system under consideration.

Example

A 0.05 kg ingot of metal is heated to $200.0^{\circ} \mathrm{C}$ and then dropped into a calorimeter containing 0.400 kg of water initially at $20.0^{\circ} \mathrm{C}$. The final equilibrium temperature of the mixed system is $22.4^{\circ} \mathrm{C}$. Find the specific heat of the metal.

Notes:

Molar specific heat

In the gas system, we normally use the number of mole instead of the mass of gas. We then define the "molar specific heat" in the same way as the specific heat.
$c \equiv \frac{Q}{m \Delta T} \rightarrow c_{m o l} \equiv \frac{Q}{n \Delta T}$

Heat and change of internal energy when the volume is constant We can identify $m c \Delta T$ (or $n c_{m o l} \Delta T$) as the change in internal energy of the system if we ignore any thermal expansion or contraction of the system $=>\Delta E_{\text {int }}=Q$
We will discuss more on this later.

Latent Heat

Latent heat (also known as latent energy or heat of transformation) is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process - usually a phase transition.

Latent Heat

$$
Q=m L
$$

Table 20.2 Latent Heats of Fusion and Vaporization

Substance	Melting Point $\left({ }^{\circ} \mathbf{C}\right)$	Latent Heat of Fusion $(\mathbf{J} / \mathbf{k g})$	Boiling Point $\left({ }^{\circ} \mathbf{C}\right)$	Latent Heat of Vaporization $(\mathbf{J} / \mathbf{k g})$
Helium $^{\text {a }}$	-272.2	5.23×10^{3}	-268.93	2.09×10^{4}
Oxygen	-218.79	1.38×10^{4}	-182.97	2.13×10^{5}
Nitrogen	-209.97	2.55×10^{4}	-195.81	2.01×10^{5}
Ethyl alcohol	-114	1.04×10^{5}	78	8.54×10^{5}
Water	0.00	3.33×10^{5}	100.00	2.26×10^{6}
Sulfur	119	3.81×10^{4}	444.60	3.26×10^{5}
Lead	327.3	2.45×10^{4}	1750	8.70×10^{5}
Aluminum	660	3.97×10^{5}	2450	1.14×10^{7}
Silver	960.80	8.82×10^{4}	2193	2.33×10^{6}
Gold	1063.00	6.44×10^{4}	2660	1.58×10^{6}
Copper	1083	1.34×10^{5}	1187	5.06×10^{6}

${ }^{\text {a }}$ Helium does not solidify at atmospheric pressure. The melting point given here corresponds to a pressure of 2.5 MPa .

Example

What is the required energy to convert a system consisting of a $1.00-\mathrm{g}$ cube of ice at $30.0^{\circ} \mathrm{C}$ to steam at $120.0^{\circ} \mathrm{C}$?

Work and Heat in Thermodynamic Processes

Consider the state of the system: $P_{i}, V_{i}, T_{i} \rightarrow P_{f}, V_{f}, T_{f}$

Consider quasi-static situation. What is it?
"A state of a system can be specified only if the system is in thermal equilibrium internally. In the case of a gas in a container, internal thermal equilibrium requires that every part of the gas be at the same pressure and temperature."

Work and Heat in Thermodynamic Processes

Consider $P_{i}, V_{i} \rightarrow P_{f}, V_{f}$

$d W=$

Compressing

- $d V$ is
- Work done on a gas:
- Work done by a gas:

Expanding

- $d V$ is
- Work done on a gas:
- Work done by a gas:

Work and Heat in Thermodynamic Processes

The work done on a gas equals the negative of the area under the $P V$ curve. The area is negative here because the volume is decreasing, resulting in positive work.

$$
W=-\int_{V}^{V_{f}} P d V \quad \begin{aligned}
& \text { Work done on a } \\
& \text { gas (on a system) }
\end{aligned}
$$

Work and Heat in Thermodynamic Processes

A constant-pressure
compression followed by a
constant-volume process

a
A constant-volume process
followed by a constant-
pressure compression

> An arbitrary compression

b
For the process of compressing a gas in a cylinder, the work done depends on the particular path taken between the initial and final states.

Work and Heat in Thermodynamic Processes

The energy transfer Q into or out of a system by heat also depends on the process.

The First Law of Thermodynamics

The first law of thermodynamics is a special case of the law of conservation of energy that describes processes in which only the internal energy changes and the only energy transfers are by heat and work

$$
\Delta E_{\mathrm{int}}=Q+W
$$

Q is the energy transfer to a system (to a gas)

- Consider + when
- Consider - when
W is the work done to a system (to a gas)
- Consider + when
- Consider - when
$\Delta E_{i n t}$ is the change of the internal energy of the system. It depends only on the temperature of the system.

The First Law of Thermodynamics

Figure 15.3 (a) The system gains energy in the form of heat but loses energy because work is done by the system. (b) The system gains energy in because work is and and

Problem-solving insight

When using the first law of thermodynamics, as expressed by Equation 15.1, be careful to follow the and the work W.
done on the system. A system can gain or lose energy simultaneously in the form of heat Q and work W. The change in internal energy due to both factors is given by Equation 15.1. Thus, the first law of thermodynamics is just the conservation-of-energy principle applied to heat, work, and the change in the internal energy.

```
THE FIRST LAW OF THERMODYNAMICS
The internal energy of a system changes from an initial value }\mp@subsup{U}{\textrm{i}}{}\mathrm{ to a final value of }\mp@subsup{U}{\textrm{f}}{ due to heat \(Q\) and work \(W\).
\[
\Delta U=U_{\mathrm{f}}-U_{\mathrm{i}}=Q-W
\]
\(Q\) is positive when the system gains heat and negative when it loses heat. \(W\) is positive when work is done by the system and negative when work is done on the system.
Example 1 illustrates the use of Equation 15.1 and the sign conventions for \(Q\) and \(W\)
(1) Example 1 Positive and Negative Work
Figure 15.3 illustrates a system and its surroundings. In part \(a\), the system gains 1500 J of heat from its surroundings, and 2200 J of work is done by the system on the surroundings. In part \(b\), the system also gains 1500 J of heat, but 2200 J of work is done on the system by the surroundings. In each case, determine the change in the internal energy of the system.
Reasoning In Figure \(15.3 a\) the system loses more energy in doing work than it gains in the form of heat, so the internal energy of the system decreases. Thus, we expect the change in the internal energy, \(\Delta U=U_{\mathrm{f}}-U_{\mathrm{i}}\), to be negative. In part \(b\) of the drawing, the system gains energy in the form of both heat and work. The internal energy of the system increases, and we expect \(\Delta U\) to be positive.
Solution (a) The heat is positive, \(Q=+1500 \mathrm{~J}\), since it is gained by the system. The work is positive, \(W=+2200 \mathrm{~J}\), since it is done by the system. According to the first law of
\(\Delta U=Q-W=(+1500 \mathrm{~J})-(+2200 \mathrm{~J})=-700 \mathrm{~J}\)
The minus sign for \(\Delta U\) indicates that the internal energy has decreased, as expected.
(b) The heat is positive, \(Q=+1500 \mathrm{~J}\), since it is gained by the system. But the work is negative, \(W=-2200 \mathrm{~J}\), since it is done on the system. Thus,
\[
\Delta U=Q-W=(+1500 \mathrm{~J})-(-2200 \mathrm{~J})=+3700 \mathrm{~J}
\]
The plus sign for \(\Delta U\) indicates that the internal energy has increased, as expected.

In the first law of thermodynamics, the internal energy \(U\), heat \(Q\), and work \(W\) are energy quantities, and each is expressed in energy units such as joules. However, there is a fundamental difference between \(U\), on the one hand, and \(Q\) and \(W\) on the other. The next example sets the stage for explaining this difference
(1) Example 2 An Ideal Gas

Dual Sign Conventions Some physics and engineering books present the first law as \(\Delta E_{\text {int }}=Q-W\), with a minus sign between the heat and work. The reason is that work is defined in these treatments as the work done by the gas rather than on the gas, as in our treatment. The equivalent equation to Equation 20.9 in these treatments defines work as \(W=\int_{V_{i}}^{V_{J}} P d V\). Therefore, if positive work is done by the gas, energy is leaving the system, leading to the negative sign in the first law.

In your studies in other chemistry or engineering courses, or in your reading of other physics books, be sure to note which sign convention is being used for the first law.
\({ }^{5}\) It is an unfortunate accident of history that the traditional symbol for internal energy is \(U\), which is also the traditional symbol for potential energy as introduced in Chapter 7. To avoid confusion between potential energy and internal energy, we use the symbol \(E_{\text {int }}\) for internal energy in this book. If you take an advanced course in thermodynamics, however, be prepared to see \(U\) used as the symbol for internal energy in the first law.

\section*{Molar specific heat at constant volume / pressure}

For the constant-volume path, all the energy input goes into increasing the internal energy of the gas because no work is done.


Along the constant-pressure path, part of the energy transferred in by heat is transferred out by work.

\section*{Table 21.2 Molar Specific Heats of Various Gases}

\section*{Molar Specific Heat ( \(\mathrm{J} / \mathrm{mol} \cdot \mathbf{K})^{\mathrm{a}}\)}
\begin{tabular}{lcccc} 
Gas & \(C_{P}\) & \(C_{V}\) & \(C_{P}-C_{V}\) & \(\gamma=C_{P} / C_{V}\) \\
\hline Monatomic gases & & & & \\
He & 20.8 & 12.5 & 8.33 & 1.67 \\
Ar & 20.8 & 12.5 & 8.33 & 1.67 \\
Ne & 20.8 & 12.7 & 8.12 & 1.64 \\
Kr & 20.8 & 12.3 & 8.49 & 1.69 \\
Diatomic gases & & & & \\
\(\mathrm{H}_{2}\) & 28.8 & 20.4 & 8.33 & 1.41 \\
\(\mathrm{~N}_{2}\) & 29.1 & 20.8 & 8.33 & 1.40 \\
\(\mathrm{O}_{2}\) & 29.4 & 21.1 & 8.33 & 1.40 \\
CO & 29.3 & 21.0 & 8.33 & 1.40 \\
\(\mathrm{Cl}_{2}\) & 34.7 & 25.7 & 8.96 & 1.35 \\
Polyatomic gases \(^{\mathrm{CO}_{2}}\) & & & & \\
\(\mathrm{SO}_{2}\) & 37.0 & 28.5 & 8.50 & 1.30 \\
\(\mathrm{H}_{2} \mathrm{O}\) & 40.4 & 31.4 & 9.00 & 1.29 \\
\(\mathrm{CH}_{4}\) & 35.4 & 27.0 & 8.37 & 1.30 \\
\({ }^{\text {a }}\) all values except that for water were obtained at 300 K. & 8.41 & 1.31 \\
\end{tabular}

\section*{Processes in Thermodynamics}


\section*{Isochoric/Isovolumetric (constant volume)}


An isochoric process is a term used to describe a situation where the volume of a system remains constant.
\[
d W_{\text {on gas }}=
\]

From the first law we see that
\[
\Delta E_{i n t}=
\]

If energy is added by heat to a system kept at constant volume, all the transferred energy remains in the system as an increase in its internal energy.

\section*{Isobaric (constant pressure)}


An isobaric process could be established by allowing the piston to move freely so that it is always in equilibrium between the net force from the gas pushing upward and the weight of the piston plus the force due to atmospheric pressure pushing downward.
\[
W_{\text {on gas }}=
\]


Case:
\(V_{f}>V_{i} \rightarrow\)
\(V_{f}<V_{i} \rightarrow\)

\section*{Example}

An ideal gas initially at 300 K undergoes an isobaric expansion at 2.50 kPa . If the volume increases from \(1.00 \mathrm{~m}^{3}\) to \(3.00 \mathrm{~m}^{3}\) and 12.5 kJ is transferred to the gas by heat. Find (a) the change in its internal energy,
(b) its final temperature.

\section*{Example}


In Figure, the change in internal energy of a gas that is taken from A to C along the blue path is 1800 J . The work done on the gas along the red path \(A B C\) is 2500 J . (a) How much energy must be added to the system by heat as it goes from \(A\) through \(B\) to \(C\) ?
(b) If the pressure at point \(A\) is five times that of point \(C\), what is the work done on the system in going from C to D?
(c) What is the energy exchanged with the surroundings by heat as the gas goes from C to A along the green path?
(d) If the change in internal energy in going from point \(D\) to point A is 1500 J , how much energy must be added to the system by heat as it goes from point C to point D ?

\section*{Isothermal}


A process that occurs at constant temperature. This process can be established by immersing the cylinder in an ice-water bath or by putting the cylinder in contact with some other constant-temperature reservoir.
\[
\Delta E_{i n t}=
\]

From the first law we see that

\section*{Isothermal Expansion of an Ideal gas}


Start from ideal gas law
\[
P=\frac{N k_{B} T}{V}
\]

Therefore,
\[
W_{\text {on gas }}=-\int_{V_{i}}^{V_{f}} P d V
\]

And since the temperature is constant, we will get

\section*{Example}

One mole of an ideal gas does 3000 J of work on its surroundings as it expands isothermally to a final pressure of 1.00 atm and volume of 25.0 L. Determine
(a) the initial volume and
(b) the temperature of the gas.

\section*{Adiabatic}

An adiabatic process is a type of thermodynamic process which occurs without transferring heat between the system and its surroundings. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work.


\section*{Adiabatic}

From the first law of Thermodynamics, \(\Delta E_{\mathrm{int}}=Q+W\), we will get


\section*{Adiabatic}

From the first law of Thermodynamics, \(\Delta E_{\mathrm{int}}=Q+W\), we will get


\section*{Free expansion}


For an adiabatic free expansion of an ideal gas, the gas is contained in an insulated container and then allowed to expand in a vacuum. Because there is no external pressure for the gas to expand against, the work done by or on the system is zero. Since this process does not involve any heat transfer or work, the first law of thermodynamics then implies that the net internal energy change of the system is zero. For an ideal gas, the temperature remains constant because the internal energy only depends on temperature in that case.

\section*{Cyclic process}

During a closed cycle, the system returns to its original thermodynamic state of temperature and pressure. Process quantities (or path quantities), such as heat and work are process dependent. For a cycle for which the system returns to its initial state the first law of thermodynamics applies:


\section*{Example}

An ideal gas initially at \(P_{i}, V_{i}\), and \(T_{i}\) is taken through a cycle as shown in the figure.
(a) Find the net work done on the gas per cycle for 1.00 mol of gas initially at \(0^{\circ} \mathrm{C}\). (b) What is the net energy added by heat to the gas per cycle?


\section*{Summary: Processes in Thermodynamics}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{\(\Delta E_{\text {int }}=Q+W\)} & Results \\
\hline \multicolumn{1}{|c|}{ Process } & Conditions & \\
\hline Isochoric/Isovolumetric & & \\
\hline Isobaric & & \\
\hline Isothermal & & \\
\hline Adiabatic & & \\
\hline Free expansion & & \\
\hline Cyclic & & \\
\hline
\end{tabular}

\section*{How is heat transferred?}

The process in which heat flows from objects with higher temperature to objects with lower temperature.

\section*{Conduction}

The movement of fluid molecules from higher temperature regions to lower temperature regions.

Thermal radiation is generated by the emission of electromagnetic waves. These waves carry away the energy from the emitting body.

Figure: https://www.machinedesign.com/ learning-resources/whats-the-difference-between/document/21834474/whats-the-difference-between-conduction-convection-and-radiation

\section*{Conduction}

\(\left.\begin{array}{lc}\text { Thermal Conductivities } \\ \text { Thermal } \\ \text { Conductivity } \\ \left(\mathbf{W} / \mathbf{m} \cdot{ }^{\circ} \mathbf{C}\right)\end{array}\right]\)

\section*{Conduction}


Two slabs of thickness \(L_{1}\) and \(L_{2}\) and thermal conductivities \(k_{1}\) and \(k_{2}\) are in thermal contact with each other as shown in Figure. The temperatures of their outer surfaces are \(T_{c}\) and \(T_{h}\), respectively, and \(T_{h}>T_{c}\). Determine the temperature at the interface and the rate of energy transfer by conduction \(T_{c}\) through an area \(A\) of the slabs in the steady-state condition.```

