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คลื่นกล (Mechanical wave)
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คลื่นที่เคลื่อนที่ไปโดยการสั่นของตัวกลาง มีการส่งผ่านพลังงานไป
ในตัวกลาง

‣ ต้องมีการรบกวนระบบ (ใส่พลังงานเข้าไปในระบบ)

‣ ต้องอาศัยตัวกลาง แต่ตัวกลางไม่ได้เคลื่อนที่ตามคลื่น แต่จะสั่น
ไปมารอบจุดสมดุล

‣ การเคลื่อนที่ของคลื่นจะส่งผ่านพลังงานจากบริเวณหนึ่ง ๆ ของ
ตัวกลางไปสู่บริเวณอื่น ๆ
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คลื่นตามขวาง (Transverse wave)
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484 Chapter 16 Wave Motion

which the pebble is dropped to the position of the object. This feature is central to wave 
motion: energy is transferred over a distance, but matter is not.

16.1 Propagation of a Disturbance
The introduction to this chapter alluded to the essence of wave motion: the trans-
fer of energy through space without the accompanying transfer of matter. In the list 
of energy transfer mechanisms in Chapter 8, two mechanisms—mechanical waves 
and electromagnetic radiation—depend on waves. By contrast, in another mecha-
nism, matter transfer, the energy transfer is accompanied by a movement of matter 
through space with no wave character in the process.
 All mechanical waves require (1) some source of disturbance, (2) a medium con-
taining elements that can be disturbed, and (3) some physical mechanism through 
which elements of the medium can influence each other. One way to demonstrate 
wave motion is to flick one end of a long string that is under tension and has its 
opposite end fixed as shown in Figure 16.1. In this manner, a single bump (called 
a pulse) is formed and travels along the string with a definite speed. Figure 16.1 
represents four consecutive “snapshots” of the creation and propagation of the trav-
eling pulse. The hand is the source of the disturbance. The string is the medium 
through which the pulse travels—individual elements of the string are disturbed 
from their equilibrium position. Furthermore, the elements of the string are con-
nected together so they influence each other. The pulse has a definite height and a 
definite speed of propagation along the medium. The shape of the pulse changes 
very little as it travels along the string.1
 We shall first focus on a pulse traveling through a medium. Once we have explored 
the behavior of a pulse, we will then turn our attention to a wave, which is a periodic 
disturbance traveling through a medium. We create a pulse on our string by flicking 
the end of the string once as in Figure 16.1. If we were to move the end of the string 
up and down repeatedly, we would create a traveling wave, which has characteristics 
a pulse does not have. We shall explore these characteristics in Section 16.2.
 As the pulse in Figure 16.1 travels, each disturbed element of the string moves in 
a direction perpendicular to the direction of propagation. Figure 16.2 illustrates this 
point for one particular element, labeled P. Notice that no part of the string ever 
moves in the direction of the propagation. A traveling wave or pulse that causes 
the elements of the disturbed medium to move perpendicular to the direction of 
propagation is called a transverse wave.
 Compare this wave with another type of pulse, one moving down a long, stretched 
spring as shown in Figure 16.3. The left end of the spring is pushed briefly to the 
right and then pulled briefly to the left. This movement creates a sudden compres-
sion of a region of the coils. The compressed region travels along the spring (to 
the right in Fig. 16.3). Notice that the direction of the displacement of the coils is 
parallel to the direction of propagation of the compressed region. A traveling wave 
or pulse that causes the elements of the medium to move parallel to the direction 
of propagation is called a longitudinal wave.

As the pulse moves along the 
string, new elements of the 
string are displaced from their 
equilibrium positions.

Figure 16.1  A hand moves the 
end of a stretched string up and 
down once (red arrow), causing a 
pulse to travel along the string.

1In reality, the pulse changes shape and gradually spreads out during the motion. This effect, called dispersion, is com-
mon to many mechanical waves as well as to electromagnetic waves. We do not consider dispersion in this chapter.

The direction of the displacement 
of any element at a point P on the 
string is perpendicular to the 
direction of propagation (red 
arrow).

P

P

P

Figure 16.2  The displacement 
of a particular string element for 
a transverse pulse traveling on a 
stretched string.

As the pulse passes by, the 
displacement of the coils is parallel to 
the direction of the propagation.

The hand moves forward 
and back once to create 
a longitudinal pulse.

Figure 16.3  A longitudinal 
pulse along a stretched spring.

อนุภาคตัวกลางเคลื่อนที่ (หรือสั่น) ใน
แนวตั้งฉากกับการเคลื่อนที่ของคลื่น 
ตัวอย่างเช่น

‣ คลื่นในเส้นเชือก
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คลื่นตามยาว (Longitudinal wave)
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อนุภาคตัวกลางเคลื่อนที่ (หรือสั่น) ในแนวเดียว
กับการเคลื่อนที่ของคลื่น ตัวอย่างเช่น

‣ คลื่นเสียง

‣ คลื่นในสปริง
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of energy transfer mechanisms in Chapter 8, two mechanisms—mechanical waves 
and electromagnetic radiation—depend on waves. By contrast, in another mecha-
nism, matter transfer, the energy transfer is accompanied by a movement of matter 
through space with no wave character in the process.
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taining elements that can be disturbed, and (3) some physical mechanism through 
which elements of the medium can influence each other. One way to demonstrate 
wave motion is to flick one end of a long string that is under tension and has its 
opposite end fixed as shown in Figure 16.1. In this manner, a single bump (called 
a pulse) is formed and travels along the string with a definite speed. Figure 16.1 
represents four consecutive “snapshots” of the creation and propagation of the trav-
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nected together so they influence each other. The pulse has a definite height and a 
definite speed of propagation along the medium. The shape of the pulse changes 
very little as it travels along the string.1
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the behavior of a pulse, we will then turn our attention to a wave, which is a periodic 
disturbance traveling through a medium. We create a pulse on our string by flicking 
the end of the string once as in Figure 16.1. If we were to move the end of the string 
up and down repeatedly, we would create a traveling wave, which has characteristics 
a pulse does not have. We shall explore these characteristics in Section 16.2.
 As the pulse in Figure 16.1 travels, each disturbed element of the string moves in 
a direction perpendicular to the direction of propagation. Figure 16.2 illustrates this 
point for one particular element, labeled P. Notice that no part of the string ever 
moves in the direction of the propagation. A traveling wave or pulse that causes 
the elements of the disturbed medium to move perpendicular to the direction of 
propagation is called a transverse wave.
 Compare this wave with another type of pulse, one moving down a long, stretched 
spring as shown in Figure 16.3. The left end of the spring is pushed briefly to the 
right and then pulled briefly to the left. This movement creates a sudden compres-
sion of a region of the coils. The compressed region travels along the spring (to 
the right in Fig. 16.3). Notice that the direction of the displacement of the coils is 
parallel to the direction of propagation of the compressed region. A traveling wave 
or pulse that causes the elements of the medium to move parallel to the direction 
of propagation is called a longitudinal wave.

As the pulse moves along the 
string, new elements of the 
string are displaced from their 
equilibrium positions.

Figure 16.1  A hand moves the 
end of a stretched string up and 
down once (red arrow), causing a 
pulse to travel along the string.

1In reality, the pulse changes shape and gradually spreads out during the motion. This effect, called dispersion, is com-
mon to many mechanical waves as well as to electromagnetic waves. We do not consider dispersion in this chapter.

The direction of the displacement 
of any element at a point P on the 
string is perpendicular to the 
direction of propagation (red 
arrow).

P

P

P

Figure 16.2  The displacement 
of a particular string element for 
a transverse pulse traveling on a 
stretched string.

As the pulse passes by, the 
displacement of the coils is parallel to 
the direction of the propagation.

The hand moves forward 
and back once to create 
a longitudinal pulse.

Figure 16.3  A longitudinal 
pulse along a stretched spring.

508 Chapter 17 Sound Waves

 This chapter begins with a discussion of the pressure variations in a sound wave, the speed 
of sound waves, and wave intensity, which is a function of wave amplitude. We then provide 
an alternative description of the intensity of sound waves that compresses the wide range of 
intensities to which the ear is sensitive into a smaller range for convenience. The effects of 
the motion of sources and listeners on the frequency of a sound are also investigated. 

17.1 Pressure Variations in Sound Waves
In Chapter 16, we began our investigation of waves by imagining the creation of 
a single pulse that traveled down a string (Figure 16.1) or a spring (Figure 16.3). 
Let’s do something similar for sound. We describe pictorially the motion of a one- 
dimensional longitudinal sound pulse moving through a long tube containing a 
compressible gas as shown in Figure 17.1. A piston at the left end can be quickly 
moved to the right to compress the gas and create the pulse. Before the piston 
is moved, the gas is undisturbed and of uniform density as represented by the 
uniformly shaded region in Figure 17.1a. When the piston is pushed to the right 
(Fig. 17.1b), the gas just in front of it is compressed (as represented by the more 
heavily shaded region); the pressure and density in this region are now higher than 
they were before the piston moved. When the piston comes to rest (Fig. 17.1c), the 
compressed region of the gas continues to move to the right, corresponding to a 
longitudinal pulse traveling through the tube with speed v.
 One can produce a one-dimensional periodic sound wave in the tube of gas in 
Figure 17.1 by causing the piston to move in simple harmonic motion. The results 
are shown in Figure 17.2. The darker parts of the colored areas in this figure rep-
resent regions in which the gas is compressed and the density and pressure are 
above their equilibrium values. A compressed region is formed whenever the pis-

vS

a

b

c

Before the piston moves, 
the gas is undisturbed.

The gas is compressed by 
the motion of the piston.

When the piston stops, the 
compressed pulse continues 
through the gas.

Figure 17.1 Motion of a longitudi-
nal pulse through a compressible gas. 
The compression (darker region) is 
produced by the moving piston.

Figure 17.2 A longitudinal wave 
propagating through a gas-filled 
tube. The source of the wave is an 
oscillating piston at the left.

l



N. Srimanobhas; Wave motion and sound waves

คลื่นที่ผิว (Surface waves)
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อนุภาคตัวกลางเคลื่อนที่ (หรือสั่น) ทั้ง 2 แนว

‣ คลื่นผิวน้

‣ คลื่นแผ่นดินไหว

Prim
ary w

aves
Secondary w
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 16.1 Propagation of a Disturbance 485

 Sound waves, which we shall discuss in Chapter 17, are another example of lon-
gitudinal waves. The disturbance in a sound wave is a series of high-pressure and 
low-pressure regions that travel through air.
 Some waves in nature exhibit a combination of transverse and longitudinal 
displacements. Surface-water waves are a good example. When a water wave trav-
els on the surface of deep water, elements of water at the surface move in nearly 
circular paths as shown in Figure 16.4. The disturbance has both transverse and 
longitudinal components. The transverse displacements seen in Figure 16.4 rep-
resent the variations in vertical position of the water elements. The longitudinal 
displacements represent elements of water moving back and forth in a horizontal 
direction.
 The three-dimensional waves that travel out from a point under the Earth’s sur-
face at which an earthquake occurs are of both types, transverse and longitudinal. 
The longitudinal waves are the faster of the two, traveling at speeds in the range of 
7 to 8 km/s near the surface. They are called P waves, with “P” standing for primary, 
because they travel faster than the transverse waves and arrive first at a seismo-
graph (a device used to detect waves due to earthquakes). The slower transverse 
waves, called S waves, with “S” standing for secondary, travel through the Earth at 
4 to 5 km/s near the surface. By recording the time interval between the arrivals 
of these two types of waves at a seismograph, the distance from the seismograph to 
the point of origin of the waves can be determined. This distance is the radius of an 
imaginary sphere centered on the seismograph. The origin of the waves is located 
somewhere on that sphere. The imaginary spheres from three or more monitoring 
stations located far apart from one another intersect at one region of the Earth, 
and this region is where the earthquake occurred.
 Consider a pulse traveling to the right on a long string as shown in Figure 16.5. 
Figure 16.5a represents the shape and position of the pulse at time t 5 0. At this 
time, the shape of the pulse, whatever it may be, can be represented by some math-
ematical function that we will write as y(x, 0) 5 f(x). This function describes the 
transverse position y of the element of the string located at each value of x at time 
t 5 0. Because the speed of the pulse is v, the pulse has traveled to the right a 
distance vt at the time t (Fig. 16.5b). We assume the shape of the pulse does not 
change with time. Therefore, at time t, the shape of the pulse is the same as it was 
at time t 5 0 as in Figure 16.5a. Consequently, an element of the string at x at this 
time has the same y position as an element located at x 2 vt had at time t 5 0:

 y(x, t) 5 y(x 2 vt, 0)

 In general, then, we can represent the transverse position y for all positions and 
times, measured in a stationary frame with the origin at O, as

 y(x, t) 5 f(x 2 vt) (16.1)

Similarly, if the pulse travels to the left, the transverse positions of elements of the 
string are described by

 y(x, t) 5 f(x 1 vt) (16.2)

 The function y, sometimes called the wave function, depends on the two vari-
ables x and t. For this reason, it is often written y(x, t), which is read “y as a function 
of x and t.”
 It is important to understand the meaning of y. Consider an element of the 
string at point P in Figure 16.5, identified by a particular value of its x coordinate. 
As the pulse passes through P, the y coordinate of this element increases, reaches 
a maximum, and then decreases to zero. The wave function y(x, t) represents the 
y coordinate—the transverse position—of any element located at position x at any 
time t. Furthermore, if t is fixed (as, for example, in the case of taking a snapshot of 
the pulse), the wave function y(x), sometimes called the waveform, defines a curve 
representing the geometric shape of the pulse at that time.

Figure 16.4 The motion of 
water elements on the surface 
of deep water in which a wave 
is propagating is a combination 
of transverse and longitudinal 
displacements. 

The elements at the surface move 
in nearly circular paths. Each 
element is displaced both 
horizontally and vertically from its 
equilibrium position.

Trough

Velocity of
propagation

Crest

y

O

vt

x
O

y

x

P

P

vS

vS

At t ! 0,  the shape of the 
pulse is given by y ! f(x).

At some later time t, the shape 
of the pulse remains unchanged 
and the vertical position of an 
element of the medium at any 
point P is given by y ! f(x " vt).

b

a

Figure 16.5  A one-dimensional 
pulse traveling to the right on a 
string with a speed v.
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 16.1 Propagation of a Disturbance 485

 Sound waves, which we shall discuss in Chapter 17, are another example of lon-
gitudinal waves. The disturbance in a sound wave is a series of high-pressure and 
low-pressure regions that travel through air.
 Some waves in nature exhibit a combination of transverse and longitudinal 
displacements. Surface-water waves are a good example. When a water wave trav-
els on the surface of deep water, elements of water at the surface move in nearly 
circular paths as shown in Figure 16.4. The disturbance has both transverse and 
longitudinal components. The transverse displacements seen in Figure 16.4 rep-
resent the variations in vertical position of the water elements. The longitudinal 
displacements represent elements of water moving back and forth in a horizontal 
direction.
 The three-dimensional waves that travel out from a point under the Earth’s sur-
face at which an earthquake occurs are of both types, transverse and longitudinal. 
The longitudinal waves are the faster of the two, traveling at speeds in the range of 
7 to 8 km/s near the surface. They are called P waves, with “P” standing for primary, 
because they travel faster than the transverse waves and arrive first at a seismo-
graph (a device used to detect waves due to earthquakes). The slower transverse 
waves, called S waves, with “S” standing for secondary, travel through the Earth at 
4 to 5 km/s near the surface. By recording the time interval between the arrivals 
of these two types of waves at a seismograph, the distance from the seismograph to 
the point of origin of the waves can be determined. This distance is the radius of an 
imaginary sphere centered on the seismograph. The origin of the waves is located 
somewhere on that sphere. The imaginary spheres from three or more monitoring 
stations located far apart from one another intersect at one region of the Earth, 
and this region is where the earthquake occurred.
 Consider a pulse traveling to the right on a long string as shown in Figure 16.5. 
Figure 16.5a represents the shape and position of the pulse at time t 5 0. At this 
time, the shape of the pulse, whatever it may be, can be represented by some math-
ematical function that we will write as y(x, 0) 5 f(x). This function describes the 
transverse position y of the element of the string located at each value of x at time 
t 5 0. Because the speed of the pulse is v, the pulse has traveled to the right a 
distance vt at the time t (Fig. 16.5b). We assume the shape of the pulse does not 
change with time. Therefore, at time t, the shape of the pulse is the same as it was 
at time t 5 0 as in Figure 16.5a. Consequently, an element of the string at x at this 
time has the same y position as an element located at x 2 vt had at time t 5 0:

 y(x, t) 5 y(x 2 vt, 0)

 In general, then, we can represent the transverse position y for all positions and 
times, measured in a stationary frame with the origin at O, as

 y(x, t) 5 f(x 2 vt) (16.1)

Similarly, if the pulse travels to the left, the transverse positions of elements of the 
string are described by

 y(x, t) 5 f(x 1 vt) (16.2)

 The function y, sometimes called the wave function, depends on the two vari-
ables x and t. For this reason, it is often written y(x, t), which is read “y as a function 
of x and t.”
 It is important to understand the meaning of y. Consider an element of the 
string at point P in Figure 16.5, identified by a particular value of its x coordinate. 
As the pulse passes through P, the y coordinate of this element increases, reaches 
a maximum, and then decreases to zero. The wave function y(x, t) represents the 
y coordinate—the transverse position—of any element located at position x at any 
time t. Furthermore, if t is fixed (as, for example, in the case of taking a snapshot of 
the pulse), the wave function y(x), sometimes called the waveform, defines a curve 
representing the geometric shape of the pulse at that time.

Figure 16.4 The motion of 
water elements on the surface 
of deep water in which a wave 
is propagating is a combination 
of transverse and longitudinal 
displacements. 

The elements at the surface move 
in nearly circular paths. Each 
element is displaced both 
horizontally and vertically from its 
equilibrium position.
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Figure 16.5  A one-dimensional 
pulse traveling to the right on a 
string with a speed v.

y(x1, t1) = f(x1 ± vt1)

y(x2, t2) = f(x2 ± vt2)

y(x1, t1) = y(x2, t2)

x1 ± vt1 = x2 ± vt2

t1 = 0

x1 = x2 ± vt2

พิจารณาความสูงของคลื่นที่เวลา t1 และ t2

เมื่อคลื่นเคลื่อนที่ไป รูปทรงของคลื่นยังเหมือนเดิม

หรือ

พิจารณาให้เวลาตอนเริ่มต้นเท่ากับศูนย์

x1 = x2 � vt

x1 = x2 + vt

เพิ่ม       ต้องเพิ่ม

เพิ่ม       ต้องลด

x2

x2

t

t

คลื่นไปทาง

ให้มีค่าคงที่ (เริ่มต้น)
คงที่

มองเข้า

หาคลื่น

+x

�xคลื่นไปทาง
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ตัวอย่าง
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คลื่นลูกหนึ่งเคลื่อนที่ไปทางขวาตามแนวแกน x ด้วยฟังก์ชั่นคลื่น


จงพิจารณาฟังก์ชั่นคลื่นที่เวลา t = 0,1 และ 2 วินาทีตามลำดับ โดย 
x และ y อยู่ในหน่วยเซนติเมตร

y(x, t) =
2

(x� 3.0t)2 + 1

486 Chapter 16 Wave Motion

Example 16.1   A Pulse Moving to the Right

A pulse moving to the right along the x axis is represented by the wave 
function

y 1x, t 2 5
21x 2 3.0t 2 2 1 1

where x and y are measured in centimeters and t is measured in sec-
onds. Find expressions for the wave function at t 5 0, t 5 1.0 s, and  
t 5 2.0 s.

Conceptualize  Figure 16.6a shows the pulse represented by this wave 
function at t 5 0. Imagine this pulse moving to the right at a speed 
of 3.0 cm/s and maintaining its shape as suggested by Figures 16.6b 
and 16.6c.

Categorize  We categorize this example as a relatively simple analysis 
problem in which we interpret the mathematical representation of a 
pulse.

Analyze  The wave function is of the form y 5  
f(x 2 v t). Inspection of the expression for  
y(x, t) and comparison to Equation 16.1 reveal 
that the wave speed is v 5 3.0 cm/s. Further-
more, by letting x 2 3.0t 5 0, we find that the 
maximum value of y is given by A 5 2.0 cm.

S O L U T I O N

Finalize  These snapshots show that the pulse moves to the right without changing its shape and that it has a constant 
speed of 3.0 cm/s.

Q uick Quiz 16.1  (i) In a long line of people waiting to buy tickets, the first person 
leaves and a pulse of motion occurs as people step forward to fill the gap.  
As each person steps forward, the gap moves through the line. Is the propaga-
tion of this gap (a) transverse or (b) longitudinal? (ii) Consider “the wave” at a 
baseball game: people stand up and raise their arms as the wave arrives at  
their location, and the resultant pulse moves around the stadium. Is this wave 
(a) transverse or (b) longitudinal?

t ! 2.0 s

t ! 1.0 s

t ! 0

y (x, 2.0)

y (x, 1.0)

y (x, 0)

3.0 cm/s

3.0 cm/s

3.0 cm/s
y (cm)

2.0
1.5
1.0
0.5

0 1 2 3 4 5 6
x (cm)

7 8

y (cm)

2.0
1.5
1.0
0.5

0 1 2 3 4 5 6
x (cm)

7 8

y (cm)

2.0
1.5
1.0
0.5

0 1 2 3 4 5 6
x (cm)

7 8

a

b

c

Figure 16.6   
(Example 16.1) Graphs 
of the function y(x, t) 5 
2/[(x 23.0t)2 1 1] at  
(a) t 5 0, (b) t 5 1.0 s, 
and (c) t 5 2.0 s.

Write the wave function expression at t 5 0: y(x, 0) 5 
2

x 2 1 1

Write the wave function expression at t 5 1.0 s: y(x, 1.0) 5 
21x 2 3.0 22 1 1

Write the wave function expression at t 5 2.0 s: y(x, 2.0) 5 
21x 2 6.0 22 1 1

For each of these expressions, we can substitute various values of x and plot the wave function. This procedure yields 
the wave functions shown in the three parts of Figure 16.6.

What if the wave function were

y 1x, t 2 5
41x 1 3.0t 22 1 1

How would that change the situation?

Answer  One new feature in this expression is the plus sign in the denominator rather than the minus sign. The  
new expression represents a pulse with a similar shape as that in Figure 16.6, but moving to the left as time progresses.

WHAT IF ?
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where x and y are measured in centimeters and t is measured in sec-
onds. Find expressions for the wave function at t 5 0, t 5 1.0 s, and  
t 5 2.0 s.

Conceptualize  Figure 16.6a shows the pulse represented by this wave 
function at t 5 0. Imagine this pulse moving to the right at a speed 
of 3.0 cm/s and maintaining its shape as suggested by Figures 16.6b 
and 16.6c.

Categorize  We categorize this example as a relatively simple analysis 
problem in which we interpret the mathematical representation of a 
pulse.

Analyze  The wave function is of the form y 5  
f(x 2 v t). Inspection of the expression for  
y(x, t) and comparison to Equation 16.1 reveal 
that the wave speed is v 5 3.0 cm/s. Further-
more, by letting x 2 3.0t 5 0, we find that the 
maximum value of y is given by A 5 2.0 cm.

S O L U T I O N

Finalize  These snapshots show that the pulse moves to the right without changing its shape and that it has a constant 
speed of 3.0 cm/s.

Q uick Quiz 16.1  (i) In a long line of people waiting to buy tickets, the first person 
leaves and a pulse of motion occurs as people step forward to fill the gap.  
As each person steps forward, the gap moves through the line. Is the propaga-
tion of this gap (a) transverse or (b) longitudinal? (ii) Consider “the wave” at a 
baseball game: people stand up and raise their arms as the wave arrives at  
their location, and the resultant pulse moves around the stadium. Is this wave 
(a) transverse or (b) longitudinal?
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Figure 16.6   
(Example 16.1) Graphs 
of the function y(x, t) 5 
2/[(x 23.0t)2 1 1] at  
(a) t 5 0, (b) t 5 1.0 s, 
and (c) t 5 2.0 s.

Write the wave function expression at t 5 0: y(x, 0) 5 
2

x 2 1 1

Write the wave function expression at t 5 1.0 s: y(x, 1.0) 5 
21x 2 3.0 22 1 1

Write the wave function expression at t 5 2.0 s: y(x, 2.0) 5 
21x 2 6.0 22 1 1

For each of these expressions, we can substitute various values of x and plot the wave function. This procedure yields 
the wave functions shown in the three parts of Figure 16.6.

What if the wave function were

y 1x, t 2 5
41x 1 3.0t 22 1 1

How would that change the situation?

Answer  One new feature in this expression is the plus sign in the denominator rather than the minus sign. The  
new expression represents a pulse with a similar shape as that in Figure 16.6, but moving to the left as time progresses.

WHAT IF ?
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Categorize  We evaluate quantities from equations developed in the chapter, so we categorize this example as a substi-
tution problem.

Use Equation 16.21 to evaluate the power: P 5 1
2 mv2A2v

Use Equations 16.9 and 16.18 to substitute 
for v and v :

P 5 1
2m 12pf 22A2aÅT

m
b 5 2p2f 2A2"mT

Substitute numerical values: P 5 2p 2 160.0 Hz 22 10.060 0 m 22"10.050 0 kg/m 2 180.0 N 2 5   512 W

What if the string is to transfer energy at a rate of 1 000 W? What must be the required amplitude if all 
other parameters remain the same?

Answer  Let us set up a ratio of the new and old power, reflecting only a change in the amplitude:

Pnew

Pold
5

1
2 mv2A 2

new v
1
2 mv2A 2

old v
5

A 2
new

A 2
old

Solving for the new amplitude gives

A new 5 A oldÅPnew

Pold
5 16.00 cm 2Å1 000 W

512 W
5 8.39 cm

WHAT IF ?

16.6 The Linear Wave Equation
In Section 16.1, we introduced the concept of the wave function to represent waves 
traveling on a string. All wave functions y(x, t) represent solutions of an equation 
called the linear wave equation. This equation gives a complete description of the 
wave motion, and from it one can derive an expression for the wave speed. Further-
more, the linear wave equation is basic to many forms of wave motion. In this sec-
tion, we derive this equation as applied to waves on strings.
 Suppose a traveling wave is propagating along a string that is under a tension T. 
Let’s consider one small string element of length Dx (Fig. 16.19). The ends of the 
element make small angles uA and uB with the x axis. Forces act on the string at its 
ends where it connects to neighboring elements. Therefore, the element is modeled 
as a particle under a net force. The net force acting on the element in the vertical 
direction is

 o Fy 5 T sin uB 2 T sin uA 5 T(sin uB 2 sin uA) 

Because the angles are small, we can use the approximation sin u < tan u to express 
the net force as

 o Fy < T(tan uB 2 tan uA) (16.22)

Imagine undergoing an infinitesimal displacement outward from the right end of 
the rope element in Figure 16.19 along the blue line representing the force T

S
. This 

displacement has infinitesimal x and y components and can be represented by the 
vector dx î 1 dy ĵ. The tangent of the angle with respect to the x axis for this dis-
placement is dy/dx. Because we evaluate this tangent at a particular instant of time, 
we must express it in partial form as 'y/'x. Substituting for the tangents in Equa-
tion 16.22 gives

 a Fy < T c a'y
'x

b
B

2 a'y
'x

b
A
d  (16.23)

B

A

x

A

B! u

u

T
S

T
S

Figure 16.19  An element of a 
string under tension T.
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พิจารณาคลื่นเคลื่อนที่ไปทางขวาเมื่อมองจากผู้สังเกตุภายนอก (โลก)

ลองมองคลื่นจากกรอบอ้างอิงเฉื่อยที่ต่างกัน เช่น มองจากกรอบอ้างอิงที่
เคลื่อนที่ไปพร้อมกับลูกคลื่นด้วยอัตราเร็วที่เท่ากัน และใช้กฎของนิวตันเพื่อ
พิสูจน์ว่า v = T/μ
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จงแสดงว่าฟังก์ชั่นคลื่นต่อไปนี้เป็นคำตอบที่เป็นไปได้ของสมการคลื่น 
โดยที่ b เป็นค่าคงที่

(a) y(x, t) = ln[b(x� vt)]

(b) y(x, t) = eb(x�vt)

(c) y(x, t) = x2 + v2t2
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เชือกเส้นหนึ่งมีมวล 0.3 kg และยาว 6 m 
(ตามรูป) ยึดเชือกด้านหนึ่งไว้กับกำแพง
อีกด้านหนึ่งคล้องผ่านรอกและผูกไว้กับ
มวล 2.0 kg จงหาความเร็วของคลื่นบน
เชือกเส้นนี้

492 Chapter 16 Wave Motion

Because the element is small, u is small and we can use the small-angle approxima-
tion sin u < u. Therefore, the magnitude of the total radial force is

Fr 5 2T sin u < 2Tu

The element has mass m 5 m Ds, where m is the mass per unit length of the string. 
Because the element forms part of a circle and subtends an angle of 2u at the center, 
Ds 5 R(2u), and

m 5 mDs 5 2mR u

The element of the string is modeled as a particle under a net force. Therefore, 
applying Newton’s second law to this element in the radial direction gives

Fr 5
mv2

R
   S   2Tu 5

2mR uv2

R
   S   T 5 mv2

Solving for v gives

 v 5 ÅT
m

 (16.18)

Notice that this derivation is based on the assumption that the pulse height is small 
relative to the length of the pulse. Using this assumption, we were able to use the 
approximation sin u < u. Furthermore, the model assumes that the tension T is not 
 affected by the presence of the pulse, so T is the same at all points on the pulse. 
Finally, this proof does not assume any particular shape for the pulse. We therefore 
conclude that a pulse of any shape will travel on the string with speed v 5 "T/m, 
without any change in pulse shape.

Q uick Quiz 16.4  Suppose you create a pulse by moving the free end of a taut string 
up and down once with your hand beginning at t 5 0. The string is attached at its 
other end to a distant wall. The pulse reaches the wall at time t. Which of the fol-
lowing actions, taken by itself, decreases the time interval required for the pulse 
to reach the wall? More than one choice may be correct. (a) moving your hand 
more quickly, but still only up and down once by the same amount (b) moving 
your hand more slowly, but still only up and down once by the same amount  
(c) moving your hand a greater distance up and down in the same amount of 
time (d) moving your hand a lesser distance up and down in the same amount of 
time (e) using a heavier string of the same length and under the same tension  
(f) using a lighter string of the same length and under the same tension (g) using 
a string of the same linear mass density but under decreased tension (h) using a 
string of the same linear mass density but under increased tension

Speed of a wave on X
a stretched string

Example 16.3   The Speed of a Pulse on a Cord 

A uniform string has a mass of 0.300 kg and a length of 6.00 m (Fig. 16.12). The string passes over a pulley and sup-
ports a 2.00-kg object. Find the speed of a pulse traveling along this string.

Conceptualize  In Figure 16.12, the hanging block establishes 
a tension in the horizontal string. This tension determines the 
speed with which waves move on the string.

Categorize  To find the tension in the string, we model the hang-
ing block as a particle in equilibrium. Then we use the tension to 
evaluate the wave speed on the string using Equation 16.18.

AM

S O L U T I O N

2.00 kg

T

Figure 16.12  (Example 
16.3) The tension T in the 
cord is maintained by the 
suspended object. The 
speed of any wave traveling 
along the cord is given by 
v 5 !T/m.

Analyze  Apply the particle in equilibrium model to the block: o Fy 5 T 2 m blockg 5 0

Solve for the tension in the string: T 5 m blockg

Pitfall Prevention 16.3
Multiple T 's Do not confuse the 
T in Equation 16.18 for the ten-
sion with the symbol T used in 
this chapter for the period of a 
wave. The context of the equation 
should help you identify which 
quantity is meant. There simply 
aren’t enough letters in the alpha-
bet to assign a unique letter to 
each variable!

ตัวอย่าง
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จากรูป เชือกสองเส้นผูกปมเชื่อมเข้าด้วยกัน แล้วผูกปลายที่เหลือเข้า
กับจุดตรึง กำหนดให้มวลต่อหน่วยความยาวของเชือกทั้งสองเส้นเป็น


กำหนดความยาวของเชือกเส้นที่หนึ่งเป็น L1 = 3.0 m และ ของเชือก
เส้นที่สอง L2 = 2.0 m และเชือกเส้นที่หนึ่งมีแรงตึงเท่ากับ 400 N ถ้า
มีการส่งคลื่นดลจากจุดตรึงที่ปลายเชือกทั้งสองออกมากพร้อมกัน ให้
มีทิศทางวิ่งเข้ามาหาปม คลื่นดลจากปลายใดจะถึงปมของเชือกก่อน
กัน

µ1 = 1.4⇥ 10�4Kg/m, µ2 = 2.8⇥ 10�4Kg/m

L1 L2

ตัวอย่าง
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ตัวอย่าง
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@y

@x
= 0,

@y

@t
= 0

v

v

รวมแล้วได้
y = 0}

“ในการสะท้อนปลาย
ตรึง คลื่นสะท้อนมี
การกลับด้าน (จากบน
เป็นล่าง ตามรูป) แต่
รูปร่างเหมือนเดิม”

จุดตรึงสร้างคลื่น
สะท้อนขึ้นมา
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v

v

พิเศษตรงบริเวณวงแหวนไร้มวล

วงแหวนได้ผลจากคลื่นที่เข้ามา 
ในขณะเดียวกันก็สร้างคลื่นที่มี 
Amplitude เดียวกันไปพร้อม ๆ 
กัน บริเวณนี้เราจะเห็นคลื่นมี 
Amplitude เป็น 2 เท่าของของ
เดิม

“ในการสะท้อนปลายอิสระ 
คลื่นสะท้อนจะวิ่งกลับด้าน
เดิม (ด้านบน ตามรูป) และรูป
ร่างเหมือนเดิม”
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16.2 Analysis Model: Traveling Wave 
In this section, we introduce an important wave function whose shape is shown in 
Figure 16.7. The wave represented by this curve is called a sinusoidal wave because 
the curve is the same as that of the function sin u plotted against u. A sinusoidal 
wave could be established on the rope in Figure 16.1 by shaking the end of the rope 
up and down in simple harmonic motion.
 The sinusoidal wave is the simplest example of a periodic continuous wave and 
can be used to build more complex waves (see Section 18.8). The brown curve in 
Figure 16.7 represents a snapshot of a traveling sinusoidal wave at t 5 0, and the 
blue curve represents a snapshot of the wave at some later time t. Imagine two types 
of motion that can occur. First, the entire waveform in Figure 16.7 moves to the 
right so that the brown curve moves toward the right and eventually reaches the 
position of the blue curve. This movement is the motion of the wave. If we focus on 
one element of the medium, such as the element at x 5 0, we see that each element 
moves up and down along the y axis in simple harmonic motion. This movement is 
the motion of the elements of the medium. It is important to differentiate between the 
motion of the wave and the motion of the elements of the medium.
 In the early chapters of this book, we developed several analysis models based on 
three simplification models: the particle, the system, and the rigid object. With our 
introduction to waves, we can develop a new simplification model, the wave, that 
will allow us to explore more analysis models for solving problems. An ideal particle 
has zero size. We can build physical objects with nonzero size as combinations of 
particles. Therefore, the particle can be considered a basic building block. An ideal 
wave has a single frequency and is infinitely long; that is, the wave exists throughout 
the Universe. (A wave of finite length must necessarily have a mixture of frequen-
cies.) When this concept is explored in Section 18.8, we will find that ideal waves 
can be combined to build complex waves, just as we combined particles.
 In what follows, we will develop the principal features and mathematical represen-
tations of the analysis model of a traveling wave. This model is used in situations in 
which a wave moves through space without interacting with other waves or particles.
 Figure 16.8a shows a snapshot of a traveling wave moving through a medium. 
Figure 16.8b shows a graph of the position of one element of the medium as a func-
tion of time. A point in Figure 16.8a at which the displacement of the element from 
its normal position is highest is called the crest of the wave. The lowest point is 
called the trough. The distance from one crest to the next is called the wavelength 
l (Greek letter lambda). More generally, the wavelength is the minimum distance 
between any two identical points on adjacent waves as shown in Figure 16.8a.
 If you count the number of seconds between the arrivals of two adjacent crests 
at a given point in space, you measure the period T of the waves. In general, the 
period is the time interval required for two identical points of adjacent waves to 
pass by a point as shown in Figure 16.8b. The period of the wave is the same as the 
period of the simple harmonic oscillation of one element of the medium.
 The same information is more often given by the inverse of the period, which is 
called the frequency f. In general, the frequency of a periodic wave is the number 
of crests (or troughs, or any other point on the wave) that pass a given point in a 
unit time interval. The frequency of a sinusoidal wave is related to the period by the 
expression
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will allow us to explore more analysis models for solving problems. An ideal particle 
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In this section, we introduce an important wave function whose shape is shown in 
Figure 16.7. The wave represented by this curve is called a sinusoidal wave because 
the curve is the same as that of the function sin u plotted against u. A sinusoidal 
wave could be established on the rope in Figure 16.1 by shaking the end of the rope 
up and down in simple harmonic motion.
 The sinusoidal wave is the simplest example of a periodic continuous wave and 
can be used to build more complex waves (see Section 18.8). The brown curve in 
Figure 16.7 represents a snapshot of a traveling sinusoidal wave at t 5 0, and the 
blue curve represents a snapshot of the wave at some later time t. Imagine two types 
of motion that can occur. First, the entire waveform in Figure 16.7 moves to the 
right so that the brown curve moves toward the right and eventually reaches the 
position of the blue curve. This movement is the motion of the wave. If we focus on 
one element of the medium, such as the element at x 5 0, we see that each element 
moves up and down along the y axis in simple harmonic motion. This movement is 
the motion of the elements of the medium. It is important to differentiate between the 
motion of the wave and the motion of the elements of the medium.
 In the early chapters of this book, we developed several analysis models based on 
three simplification models: the particle, the system, and the rigid object. With our 
introduction to waves, we can develop a new simplification model, the wave, that 
will allow us to explore more analysis models for solving problems. An ideal particle 
has zero size. We can build physical objects with nonzero size as combinations of 
particles. Therefore, the particle can be considered a basic building block. An ideal 
wave has a single frequency and is infinitely long; that is, the wave exists throughout 
the Universe. (A wave of finite length must necessarily have a mixture of frequen-
cies.) When this concept is explored in Section 18.8, we will find that ideal waves 
can be combined to build complex waves, just as we combined particles.
 In what follows, we will develop the principal features and mathematical represen-
tations of the analysis model of a traveling wave. This model is used in situations in 
which a wave moves through space without interacting with other waves or particles.
 Figure 16.8a shows a snapshot of a traveling wave moving through a medium. 
Figure 16.8b shows a graph of the position of one element of the medium as a func-
tion of time. A point in Figure 16.8a at which the displacement of the element from 
its normal position is highest is called the crest of the wave. The lowest point is 
called the trough. The distance from one crest to the next is called the wavelength 
l (Greek letter lambda). More generally, the wavelength is the minimum distance 
between any two identical points on adjacent waves as shown in Figure 16.8a.
 If you count the number of seconds between the arrivals of two adjacent crests 
at a given point in space, you measure the period T of the waves. In general, the 
period is the time interval required for two identical points of adjacent waves to 
pass by a point as shown in Figure 16.8b. The period of the wave is the same as the 
period of the simple harmonic oscillation of one element of the medium.
 The same information is more often given by the inverse of the period, which is 
called the frequency f. In general, the frequency of a periodic wave is the number 
of crests (or troughs, or any other point on the wave) that pass a given point in a 
unit time interval. The frequency of a sinusoidal wave is related to the period by the 
expression
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= ±!A cos(kx± !t)

@2y

@tt
= ±!2A sin(kx± !t)

@2y

@t2
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ตัวอย่าง
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มีฟังก์ชั่นคลื่นอยู่ 3 ฟังก์ชั่นคือ


(1) จงเรียงลำดับคลื่นตามอัตราเร็วเฟส จากมากไปน้อย

(2) จงเรียงลำดับอัตราเร็วสูงสุดของตัวกลาง จากมากไปน้อย

(a) y(x, t) = 2 sin(4x� 2t)

(b) y(x, t) = sin(3x� 4t)

(c) y(x, t) = 3 sin(3x� 3t)
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ตัวอย่าง
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คลื่นในเส้นเชือกมีสมการการกระจัดของอนุภาคเส้นเชือกในหน่วย
เมตรเป็น


จงหา

(1) อำพน (Amplitude)

(2) ความยาวคลื่น

(3) คาบ

(4) อัตราเร็วเฟส

(5) อัตราเร็วสูงสุดของอนุภาคตัวกลางในเส้นเชือกนี้

(6) อัตราเร็วของอนุภาคตัวกลางที่ตำแหน่ง 6 m ณ เวลา 0.25 วินาที

(7) อัตราเร่งของอนุภาคตัวกลางที่ตำแหน่ง 6 m ณ เวลา 0.25 วินาที

y(x, t) = 15 sin
⇣ ⇡

16
(2x� 64t)

⌘

ตัวอย่าง
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ตัวอย่าง
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คลื่นรูปไซต์วิ่งไปในทิศ +x มีค่าอำพล (Amplitude) เท่ากับ 15 ซม. 
มีความยาวคลื่น 40 ซม. และมีความถี่ 8 เฮิร์ต ณ เวลา t=0 การกระ
จัดของอนุภาค ณ ตำแหน่ง x=0 คือ 15 ซม.ตามรูป จงหา

(1) เลขคลื่น (k)

(2) คาบ

(3) ความถี่เชิงมุม

(4) อัตราเร็วเฟส

(5) ค่าคงที่ของเฟส (phase constant)

(6) ฟังก์ชั่นคลื่นของคลื่นนี้

 16.2 Analysis Model: Traveling Wave 489

Using these definitions, Equation 16.7 can be written in the more compact form

 y 5 A sin (kx 2 vt) (16.10)

 Using Equations 16.3, 16.8, and 16.9, the wave speed v originally given in Equa-
tion 16.6 can be expressed in the following alternative forms:

 v 5
v

k
 (16.11)

 v 5 lf (16.12)

 The wave function given by Equation 16.10 assumes the vertical position y of an 
element of the medium is zero at x 5 0 and t 5 0. That need not be the case. If it is 
not, we generally express the wave function in the form

 y 5 A sin (kx 2 vt 1 f) (16.13)

where f is the phase constant, just as we learned in our study of periodic motion in 
Chapter 15. This constant can be determined from the initial conditions. The pri-
mary equations in the mathematical representation of the traveling wave analysis 
model are Equations 16.3, 16.10, and 16.12.

Q uick Quiz 16.2  A sinusoidal wave of frequency f is traveling along a stretched 
string. The string is brought to rest, and a second traveling wave of frequency  
2f is established on the string. (i) What is the wave speed of the second wave?  
(a) twice that of the first wave (b) half that of the first wave (c) the same as 
that of the first wave (d) impossible to determine (ii) From the same choices, 
describe the wavelength of the second wave. (iii) From the same choices, 
describe the amplitude of the second wave.

�W  Wave function for a  
sinusoidal wave

�W Speed of a sinusoidal wave

�W  General expression for a 
sinusoidal wave

Example 16.2   A Traveling Sinusoidal Wave 

A sinusoidal wave traveling in the positive x direction has an amplitude of 15.0 cm, a wavelength of 40.0 cm, and a 
frequency of 8.00 Hz. The vertical position of an element of the medium at t 5 0 and x 5 0 is also 15.0 cm as shown in 
Figure 16.9.

(A)  Find the wave number k, period T, angular frequency v, and speed v of the wave.

Conceptualize  Figure 16.9 shows the wave at t 5 0. 
Imagine this wave moving to the right and maintain-
ing its shape.

Categorize  From the description in the problem state-
ment, we see that we are analyzing a mechanical wave 
moving through a medium, so we categorize the prob-
lem with the traveling wave model.

Analyze

AM

S O L U T I O N

y (cm)

40.0 cm

15.0 cm
x (cm)Figure 16.9  (Example 16.2) A 

sinusoidal wave of wavelength  
l 5 40.0 cm and amplitude  
A 5 15.0 cm.

continued

Evaluate the wave number from Equation 16.8: k 5
2p

l
5

2p rad
40.0 cm

5   15.7 rad/m

Evaluate the period of the wave from Equation 16.3: T 5
1
f

5
1

8.00 s21 5   0.125 s

Evaluate the angular frequency of the wave from Equa-
tion 16.9:

v 5 2pf  5 2p(8.00 s21) 5   50.3 rad/s

Evaluate the wave speed from Equation 16.12: v 5 lf 5 (40.0 cm)(8.00 s21) 5   3.20 m/s

ตัวอย่าง
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ตัวอย่าง
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การรวมกันของคลื่น (Superposition of waves)
y(x, t) = y1(x, t) + y2(x, t)

 18.1 Analysis Model: Waves in Interference 535

Q uick Quiz 18.1  Two pulses move in opposite directions on a string and are iden-
tical in shape except that one has positive displacements of the elements of the 
string and the other has negative displacements. At the moment the two pulses 
completely overlap on the string, what happens? (a) The energy associated with 
the pulses has disappeared. (b) The string is not moving. (c) The string forms a 
straight line. (d) The pulses have vanished and will not reappear.

Superposition of Sinusoidal Waves
Let us now apply the principle of superposition to two sinusoidal waves traveling in 
the same direction in a linear medium. If the two waves are traveling to the right 
and have the same frequency, wavelength, and amplitude but differ in phase, we 
can express their individual wave functions as

y1 5 A sin (kx 2 vt)    y2 5 A sin (kx 2 vt 1 f)

where, as usual, k 5 2p/l, v 5 2pf, and f is the phase constant as discussed in Sec-
tion 16.2. Hence, the resultant wave function y is

y 5 y1 1 y2 5 A [sin (kx 2 vt) 1  sin (kx 2 vt 1 f)]

To simplify this expression, we use the trigonometric identity

sin a 1 sin b 5 2 cos aa 2 b
2

b sin aa 1 b
2

b

b

c

d

a

y2 y 1

y 1 y2

y 1 y2

y2y 1

!

!

When the pulses overlap, the 
wave function is the sum of 
the individual wave functions.

When the crests of the two 
pulses align, the amplitude is 
the sum of the individual 
amplitudes.

When the pulses no longer 
overlap, they have not been 
permanently affected by the 
interference.

Figure 18.1 Constructive interfer-
ence. Two positive pulses travel on 
a stretched string in opposite direc-
tions and overlap.

y 1

y 2

y 2
y 1

y 1 y 2!

y 1 y 2!

When the pulses overlap, the 
wave function is the sum of 
the individual wave functions.

When the crests of the two 
pulses align, the amplitude is 
the difference between the 
individual amplitudes.

When the pulses no longer 
overlap, they have not been 
permanently affected by the 
interference.

b

c

d

a

Figure 18.2 Destructive interfer-
ence. Two pulses, one positive and 
one negative, travel on a stretched 
string in opposite directions and 
overlap.
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การรวมกันของคลื่น (Superposition of waves)
พิจารณาในกรณีที่คลื่น 2 ขบวนวิ่งไปทางขวาเหมือนกัน มีความถี่
เดียวกัน ความยาวคลื่นเท่ากัน และอำพล (Amplitude) เท่ากัน ต่าง
กันแค่เฟส

y1 = A sin(kx� !t), y2 = A sin(kx� !t+ �)

y = y1 + y2 = A sin(kx� !t) +A sin(kx� !t+ �)

พิจารณาการรวมกันของคลื่นสองขบวนนี้

ใช้สูตรทางตรีโกณมิติ
sin a+ sin b = 2 cos

✓
a� b

2

◆
sin

✓
a+ b

2

◆

เราจะได้ว่า
y = 2A cos

✓
�

2

◆
sin

✓
kx� wt+

�

2

◆
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การรวมกันของคลื่น (Superposition of waves)

y = 2A cos

✓
�

2

◆
sin

✓
kx� wt+

�

2

◆

คลื่นใหม่มีความถี่และความยาวคลื่นเท่าเดิม

อัมพล (Amplitude) ลัพธ์มีค่าขึ้นอยู่กับความต่างเฟส


‣ คลื่นจะเสริมกันมากที่สุดเมื่อ                          หรือ


‣ คลื่นจะหักล้างกันมากที่สุดเมื่อ                       หรือ

cos

✓
�

2

◆
= ±1

cos

✓
�

2

◆
= 0

� = 0, 2⇡, 4⇡, ...

� = ⇡, 3⇡, 5⇡, ...
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การรวมกันของคลื่น (Superposition of waves)
536 Chapter 18 Superposition and Standing Waves

Letting a 5 kx 2 vt and b 5 kx 2 vt 1 f, we find that the resultant wave function y 
reduces to

y 5 2A cos af

2
b sin akx 2 vt 1

f

2
b

This result has several important features. The resultant wave function y also is 
sinusoidal and has the same frequency and wavelength as the individual waves 
because the sine function incorporates the same values of k and v that appear in 
the original wave functions. The amplitude of the resultant wave is 2A cos (f/2), 
and its phase constant is f/2. If the phase constant f of the original wave equals 0,  
then cos (f/2) 5 cos 0 5 1 and the amplitude of the resultant wave is 2A, twice the 
amplitude of either individual wave. In this case, the crests of the two waves are at 
the same locations in space and the waves are said to be everywhere in phase and 
therefore interfere constructively. The individual waves y1 and y2 combine to form 
the red-brown curve y of amplitude 2A shown in Figure 18.3a. Because the indi-
vidual waves are in phase, they are indistinguishable in Figure 18.3a, where they 
appear as a single blue curve. In general, constructive interference occurs when 
cos (f/2) 5 61. That is true, for example, when f 5 0, 2p, 4p, . . . rad, that is, when 
f is an even multiple of p.
 When f is equal to p rad or to any odd multiple of p, then cos (f/2) 5 cos (p/2) 5 
0 and the crests of one wave occur at the same positions as the troughs of the sec-
ond wave (Fig. 18.3b). Therefore, as a consequence of destructive interference, the 
resultant wave has zero amplitude everywhere as shown by the straight red-brown 
line in Figure 18.3b. Finally, when the phase constant has an arbitrary value other 
than 0 or an integer multiple of p rad (Fig. 18.3c), the resultant wave has an ampli-
tude whose value is somewhere between 0 and 2A.
 In the more general case in which the waves have the same wavelength but dif-
ferent amplitudes, the results are similar with the following exceptions. In the in-
phase case, the amplitude of the resultant wave is not twice that of a single wave, 
but rather is the sum of the amplitudes of the two waves. When the waves are p rad 
out of phase, they do not completely cancel as in Figure 18.3b. The result is a wave 
whose amplitude is the difference in the amplitudes of the individual waves.

Interference of Sound Waves
One simple device for demonstrating interference of sound waves is illustrated in 
Figure 18.4. Sound from a loudspeaker S is sent into a tube at point P, where there is 

Resultant of two traveling X 
sinusoidal waves

y

x

x

x

y
y1 y2 y

y y y1 y2

! 60°

y

f

! 180°f

! 0°f

The individual waves are in phase 
and therefore indistinguishable.

Constructive interference: the 
amplitudes add.

The individual waves are 180° out 
of phase.

Destructive interference: the 
waves cancel.

This intermediate result is neither 
constructive nor destructive.

b

c

a

Figure 18.3 The superposition 
of two identical waves y1 and y2 
(blue and green, respectively) to 
yield a resultant wave (red-brown).

A sound wave from the speaker 
(S) propagates into the tube and 
splits into two parts at point P.

Path length r1

Path length r2

R

S

P

The two waves, which combine 
at the opposite side, are 
detected at the receiver (R).

Figure 18.4  An acoustical 
system for demonstrating interfer-
ence of sound waves. The upper 
path length r2 can be varied by 
sliding the upper section.

มีคลื่นสองขบวนคือสีเขียวและสีฟ้า คลื่นลัพท์คือสีเลือดหมู
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ตัวอย่าง
คลื่นรูปไซน์สองขบวนเหมือนกัน มีความยาวคลื่นเท่ากัน 3.00 m วิ่งไป
ในทิศทางเดียวกัน โดยมีอัตราเร็วเท่ากัน 2.00 m/s โดยคลื่นขบวนที่
สองเกิดขึ้นที่เดียวกับคลื่นขบวนแรก แต่เกิดขึ้นในภายหลัง อำพลลัพธ์
ของการรวมการรวมกันของคลื่นทั้งสองขบวนมีขนาดเท่ากับอำพลของ
คลื่นขบวนแรก (หรือขบวนที่สอง) จงหาช่วงเวลาที่เป็นไปได้ที่น้อยที่สุด
ของการเกิดคลื่นขบวนที่สองภายหลังจากการเกิดขึ้นของคลื่นขบวน
แรก
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คลื่นสถิต/คลื่นนิ่ง (Standing wave)
พิจารณาในกรณีที่คลื่น 2 ขบวนวิ่งสวนทางกัน โดยคลื่นทั้งสองขบวนมี
ความถี่เดียวกัน ความยาวคลื่นเท่ากัน และอำพล (Amplitude) เท่ากัน

y1 = A sin(kx� !t), y2 = A sin(kx+ !t)

พิจารณาการรวมกันของคลื่นสองขบวนนี้

ถ้า                   จุดนั้นก็จะไม่เคลื่อนที่เลยไม่ว่าจะในเวลาใด ๆ

เราเรียกคลื่นลักษณะนี้ว่าคลื่นสถิต/คลื่นนิ่ง (Standing wave)

sin(kx) = 0

y = y1 + y2 = A sin(kx� !t) +A sin(kx+ !t)

y = 2A sin(kx) cos(!t)
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คลื่นสถิต/คลื่นนิ่ง (Standing wave)
เงื่อนไขที่เราพิจารณาคือปลายทั้งสองเป็นปลายตรึง ไม่มีการเคลื่อนที่

x = 0

x = L

x = 0

x = L
sin(k · 0) = 0

sin(k · L) = 0

kL = n⇡;n = 1, 2, 3, 4, . . .

kn =
n⇡

L

sin(k · L) = 0
kn =

n⇡

L

�n =
2⇡

kn
=

2L

n

!n = knv =
n⇡v

L

fn =
nv

2L

kL = n⇡;n = 1, 2, . . .

v =
p

T/µ

คลื่นในเส้นเชือก
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คลื่นสถิต/คลื่นนิ่ง (Standing wave)
542 Chapter 18 Superposition and Standing Waves

mode is the longest-wavelength mode that is consistent with our boundary condi-
tions. The first normal mode occurs when the wavelength l1 is equal to twice the 
length of the string, or l1 5 2L. The section of a standing wave from one node to 
the next node is called a loop. In the first normal mode, the string is vibrating in 
one loop. In the second normal mode (see Fig. 18.10b), the string vibrates in two 
loops. When the left half of the string is moving upward, the right half is moving 
downward. In this case, the wavelength l2 is equal to the length of the string, as 
expressed by l2 5 L. The third normal mode (see Fig. 18.10c) corresponds to the 
case in which l3 5 2L/3, and the string vibrates in three loops. In general, the wave-
lengths of the various normal modes for a string of length L fixed at both ends are

 ln 5
2L
n  n 5 1, 2, 3, c (18.4)

where the index n refers to the nth normal mode of oscillation. These modes are 
possible. The actual modes that are excited on a string are discussed shortly.
 The natural frequencies associated with the modes of oscillation are obtained 
from the relationship f 5 v/l, where the wave speed v is the same for all frequen-
cies. Using Equation 18.4, we find that the natural frequencies fn of the normal 
modes are

 fn 5
v
ln

5 n 
v

2L
 n 5 1, 2, 3, c (18.5)

These natural frequencies are also called the quantized frequencies associated with the  
vibrating string fixed at both ends.
 Because v 5 !T/m (see Eq. 16.18) for waves on a string, where T is the tension 
in the string and m is its linear mass density, we can also express the natural fre-
quencies of a taut string as

 fn 5
n

2L
 ÅT

m
 n 5 1, 2, 3, c (18.6)

The lowest frequency f1, which corresponds to n 5 1, is called either the fundamen-
tal or the fundamental frequency and is given by

 f1 5
1

2L
 ÅT

m
 (18.7)

 The frequencies of the remaining normal modes are integer multiples of the 
fundamental frequency (Eq. 18.5). Frequencies of normal modes that exhibit such 
an integer- multiple relationship form a harmonic series, and the normal modes 
are called harmonics. The fundamental frequency f1 is the frequency of the first 
harmonic, the frequency f2 5 2f1 is that of the second harmonic, and the frequency 
fn 5 nf1 is that of the nth harmonic. Other oscillating systems, such as a drumhead, 
exhibit normal modes, but the frequencies are not related as integer multiples of 
a fundamental (see Section 18.6). Therefore, we do not use the term harmonic in 
association with those types of systems.

Wavelengths of X
normal modes

Natural frequencies of X
normal modes as functions 
of wave speed and length 

of string

Natural frequencies of X 
normal modes as functions 

of string tension and 
linear mass density

Fundamental frequency
of a taut string X

n ! 1

N
A

N

L ! – 1
1
2
l

f1

a

Fundamental, or first harmonic

N NA A N

n ! 2 L ! 2l

f2

b

Second harmonic

n  ! 3

N N N NA A A

L  ! – 3
3
2
l

f3

c

Third harmonic

Figure 18.10 The normal modes of vibration of the string in Figure 18.9 form a harmonic series. 
The string vibrates between the extremes shown.

542 Chapter 18 Superposition and Standing Waves

mode is the longest-wavelength mode that is consistent with our boundary condi-
tions. The first normal mode occurs when the wavelength l1 is equal to twice the 
length of the string, or l1 5 2L. The section of a standing wave from one node to 
the next node is called a loop. In the first normal mode, the string is vibrating in 
one loop. In the second normal mode (see Fig. 18.10b), the string vibrates in two 
loops. When the left half of the string is moving upward, the right half is moving 
downward. In this case, the wavelength l2 is equal to the length of the string, as 
expressed by l2 5 L. The third normal mode (see Fig. 18.10c) corresponds to the 
case in which l3 5 2L/3, and the string vibrates in three loops. In general, the wave-
lengths of the various normal modes for a string of length L fixed at both ends are

 ln 5
2L
n  n 5 1, 2, 3, c (18.4)

where the index n refers to the nth normal mode of oscillation. These modes are 
possible. The actual modes that are excited on a string are discussed shortly.
 The natural frequencies associated with the modes of oscillation are obtained 
from the relationship f 5 v/l, where the wave speed v is the same for all frequen-
cies. Using Equation 18.4, we find that the natural frequencies fn of the normal 
modes are

 fn 5
v
ln

5 n 
v

2L
 n 5 1, 2, 3, c (18.5)

These natural frequencies are also called the quantized frequencies associated with the  
vibrating string fixed at both ends.
 Because v 5 !T/m (see Eq. 16.18) for waves on a string, where T is the tension 
in the string and m is its linear mass density, we can also express the natural fre-
quencies of a taut string as

 fn 5
n

2L
 ÅT

m
 n 5 1, 2, 3, c (18.6)

The lowest frequency f1, which corresponds to n 5 1, is called either the fundamen-
tal or the fundamental frequency and is given by

 f1 5
1

2L
 ÅT

m
 (18.7)

 The frequencies of the remaining normal modes are integer multiples of the 
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 The natural frequencies associated with the modes of oscillation are obtained 
from the relationship f 5 v/l, where the wave speed v is the same for all frequen-
cies. Using Equation 18.4, we find that the natural frequencies fn of the normal 
modes are

 fn 5
v
ln

5 n 
v

2L
 n 5 1, 2, 3, c (18.5)

These natural frequencies are also called the quantized frequencies associated with the  
vibrating string fixed at both ends.
 Because v 5 !T/m (see Eq. 16.18) for waves on a string, where T is the tension 
in the string and m is its linear mass density, we can also express the natural fre-
quencies of a taut string as

 fn 5
n

2L
 ÅT

m
 n 5 1, 2, 3, c (18.6)

The lowest frequency f1, which corresponds to n 5 1, is called either the fundamen-
tal or the fundamental frequency and is given by

 f1 5
1

2L
 ÅT

m
 (18.7)

 The frequencies of the remaining normal modes are integer multiples of the 
fundamental frequency (Eq. 18.5). Frequencies of normal modes that exhibit such 
an integer- multiple relationship form a harmonic series, and the normal modes 
are called harmonics. The fundamental frequency f1 is the frequency of the first 
harmonic, the frequency f2 5 2f1 is that of the second harmonic, and the frequency 
fn 5 nf1 is that of the nth harmonic. Other oscillating systems, such as a drumhead, 
exhibit normal modes, but the frequencies are not related as integer multiples of 
a fundamental (see Section 18.6). Therefore, we do not use the term harmonic in 
association with those types of systems.

Wavelengths of X
normal modes

Natural frequencies of X
normal modes as functions 
of wave speed and length 

of string

Natural frequencies of X 
normal modes as functions 

of string tension and 
linear mass density

Fundamental frequency
of a taut string X

n ! 1

N
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l
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a

Fundamental, or first harmonic
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n ! 2 L ! 2l

f2

b

Second harmonic

n  ! 3
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L  ! – 3
3
2
l

f3

c
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Figure 18.10 The normal modes of vibration of the string in Figure 18.9 form a harmonic series. 
The string vibrates between the extremes shown.
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ตัวอย่าง
คลื่นสถิตในเส้นเชือกมีสมการการกระจัดในหน่วยเมตรเป็น


จงหา

(1) อำพน (Amplitude)

(2) อัตราเร็วเฟส

(3) ระยะห่างจะหว่างจุดบัพ 2 บัพ

(4) อัตราเร็วของอนุภาคตัวกลางที่ตำแหน่ง 1.5 ซม. ณ เวลา 9/8 
วินาที

y(x, t) = 0.50 sin
⇣⇡
3
x
⌘
cos(40⇡t)
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บีสต์ (Beat)
พิจารณากรณีที่คลื่น 2 ขบวนมาร่วมกัน โดยคลื่นทั้งสองขบวนมีความถี่
ต่างกันเล็กน้อย

fbeat = |f1 � f2|

1 2 3 4 5

-0.2

-0.1

0.1

0.2

2 4 6 8 10

-0.4

-0.2

0.2

0.4

Mathematica

wave1	=	Plot[0.2*Cos[20*t],	{t,	0,	5},	PlotStyle	->	Red];

wave2	=	Plot[0.2*Cos[22*t],	{t,	0,	5}];

Show[wave1,	wave2]

Plot[0.2*Cos[20*t]	+	0.2*Cos[22*t],	{t,	0,	10}]



N. Srimanobhas; Wave motion and sound waves 39

ตัวอย่าง
สายเปียโนเหมือนกันสองเส้น มีความยาว 0.750 m ให้ความถี่เท่ากัน
พอดีที่ 440 Hz. ถ้าความตึงของสายเส้นที่หนึ่งเพิ่มขึ้น 1.0% เมื่อใช้
สายทั้งสองเส้นพร้อม ๆ กันจงหาความถี่บีสต์ระหว่างความถี่หลักมูล 
(fundamental frequency) ของสายเปียโนทั้งสอง
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dx
v

y(x, t) = A sin[k(x� vt)]

พิจารณาพลังงานจลน์ของก้อนมวล       ที่แกว่งขึ้นลงdm

dEk =
1

2
(dm)v2y

@y

@t
= �Akv cos[k(x� vt)]

dm = µdx

Ek =
1

2
µA2k2v2

Z �

0
cos2 k(x� vt) dx

=
�

2

2⇡

�s
T

µ

2⇡

�s
T

µ

Ek =
A2⇡2T

�

=
1

4
µ!2A2�

พลังงานจลน์ของคลื่น
1 wavelength

T, µ, v2 =

s
T

µ
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พลังงานศักย์ขึ้นอยู่กับระยะยืดของเชือก

จากรูปด้านขวา เชือกจะยืดออกจากระยะ

เดิมเท่ากับ dx

dyp dx
2 + dy

2

p
dx2 + dy2 � dx

พลังงานศักย์หาได้จาก
dU = T · 1

2

✓
dy

dx

◆2

dx

p
dx2 + dy2 � dx = dx

s

1 +

✓
dy

dx

◆2

� dx

⇡ dx

 
1 +

1

2

✓
dy

dx

◆2
!

� dx

⇡ 1

2

✓
dy

dx

◆2

dx

y(x, t) = A sin[k(x� vt)]

แทนค่า

และอินทิเกรต 0 ถึง �

Ek =
A2⇡2T

�

=
1

4
µ!2A2�

พลังงานศักย์ของคลื่น
1 wavelength

U

เท่ากับพลังงานจล์ของ
คลื่น 1 wavelength
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คลื่นที่เคลื่อนที่ไป
Traveling wave

คลื่นสถิต
Standing wave

พิจารณาพลังงาน ณ ขณะหนึ่ง ๆ พิจารณาพลังงาน ณ ขณะหนึ่ง ๆ 
เลือกขณะที่คลื่นกำลังจะ
เคลื่อนที่กลับทิศ (บนสุดกลับลง
ล่าง หรือล่างสุดจะขึ้นบน) คลื่น
จะมีแต่พลังงานศักย์เท่านั้น

Etotal =
A2⇡2T

�

Etotal = Ek + U

=
2A2⇡2T

�

=
1

2
µ!2A2�
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กำลังเฉลี่ย หรืออัตราการส่งผ่านพลังงานเฉลี่ย (ทั้งพลังงานจลน์ และ
พลังงานศักย์)

P =
E

t
=

2A2⇡2T

�
(
v

�
)

=
2A2⇡2Tv

�2

P =
E

t
=

1

2
µ!2A2�(

v

�
)

=
1

2
µv!2A2

มีค่าเท่ากัน}
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ลวดเส้นหนึ่งมีมวลต่อหน่วยความยาว 525 g/m มีความตึง 45N ถ้าปล่อย
คลื่นที่มีความถี่ 120 Hz และมีอำพน 8.5 mm ให้เคลื่อนที่บนเส้นลวด 
คลื่นจะส่งผ่านพลังงานด้วยอัตราเท่าไหร่
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จงพิสูจน์กฎการอนุรักษ์พลังงานในกรณีที่คลื่นสองขบวนวิ่งสวนทางกัน 
แล้วเกิดเป็นคลื่นสถิต
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508 Chapter 17 Sound Waves

 This chapter begins with a discussion of the pressure variations in a sound wave, the speed 
of sound waves, and wave intensity, which is a function of wave amplitude. We then provide 
an alternative description of the intensity of sound waves that compresses the wide range of 
intensities to which the ear is sensitive into a smaller range for convenience. The effects of 
the motion of sources and listeners on the frequency of a sound are also investigated. 

17.1 Pressure Variations in Sound Waves
In Chapter 16, we began our investigation of waves by imagining the creation of 
a single pulse that traveled down a string (Figure 16.1) or a spring (Figure 16.3). 
Let’s do something similar for sound. We describe pictorially the motion of a one- 
dimensional longitudinal sound pulse moving through a long tube containing a 
compressible gas as shown in Figure 17.1. A piston at the left end can be quickly 
moved to the right to compress the gas and create the pulse. Before the piston 
is moved, the gas is undisturbed and of uniform density as represented by the 
uniformly shaded region in Figure 17.1a. When the piston is pushed to the right 
(Fig. 17.1b), the gas just in front of it is compressed (as represented by the more 
heavily shaded region); the pressure and density in this region are now higher than 
they were before the piston moved. When the piston comes to rest (Fig. 17.1c), the 
compressed region of the gas continues to move to the right, corresponding to a 
longitudinal pulse traveling through the tube with speed v.
 One can produce a one-dimensional periodic sound wave in the tube of gas in 
Figure 17.1 by causing the piston to move in simple harmonic motion. The results 
are shown in Figure 17.2. The darker parts of the colored areas in this figure rep-
resent regions in which the gas is compressed and the density and pressure are 
above their equilibrium values. A compressed region is formed whenever the pis-

vS

a

b

c

Before the piston moves, 
the gas is undisturbed.

The gas is compressed by 
the motion of the piston.

When the piston stops, the 
compressed pulse continues 
through the gas.

Figure 17.1 Motion of a longitudi-
nal pulse through a compressible gas. 
The compression (darker region) is 
produced by the moving piston.

Figure 17.2 A longitudinal wave 
propagating through a gas-filled 
tube. The source of the wave is an 
oscillating piston at the left.

l
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Substitute the position function given by Equation 17.1:

DP 5 2B 
'
'x

3smax cos 1kx 2 vt 2 4 5 Bsmaxk  sin 1kx 2 vt 2
From this result, we see that a displacement described by a cosine function leads to 
a pressure described by a sine function. We also see that the displacement and pres-
sure amplitudes are related by

 DPmax 5 Bsmaxk (17.4)

This relationship depends on the bulk modulus of the gas, which is not as readily 
available as is the density of the gas. Once we determine the speed of sound in a gas 
in Section 17.2, we will be able to provide an expression that relates DPmax and smax 
in terms of the density of the gas.
 This discussion shows that a sound wave may be described equally well in terms 
of either pressure or displacement. A comparison of Equations 17.1 and 17.2 shows 
that the pressure wave is 908 out of phase with the displacement wave. Graphs of 
these functions are shown in Figure 17.4. The pressure variation is a maximum 
when the displacement from equilibrium is zero, and the displacement from equi-
librium is a maximum when the pressure variation is zero.

Q uick Quiz 17.1  If you blow across the top of an empty soft-drink bottle, a pulse 
of sound travels down through the air in the bottle. At the moment the pulse 
reaches the bottom of the bottle, what is the correct description of the displace-
ment of elements of air from their equilibrium positions and the pressure of the 
air at this point? (a) The displacement and pressure are both at a maximum.  
(b) The displacement and pressure are both at a minimum. (c) The displace-
ment is zero, and the pressure is a maximum. (d) The displacement is zero, and 
the pressure is a minimum.

17.2 Speed of Sound Waves
We now extend the discussion begun in Section 17.1 to evaluate the speed of sound 
in a gas. In Figure 17.5a, consider the cylindrical element of gas between the piston 
and the dashed line. This element of gas is in equilibrium under the influence of 
forces of equal magnitude, from the piston on the left and from the rest of the gas 
on the right. The magnitude of these forces is PA, where P is the pressure in the gas 
and A is the cross-sectional area of the tube.
 Figure 17.5b shows the situation after a time interval Dt during which the piston 
moves to the right at a constant speed vx due to a force from the left on the piston 
that has increased in magnitude to (P 1 DP)A. By the end of the time interval Dt, 

Undisturbed gas

Undisturbed gas

Compressed gas

v !t

vx !tb

a

(P " !P)A î

PA î
#PA î

vx î
#PA î

Figure 17.5  (a) An undisturbed 
element of gas of length v  Dt in a 
tube of cross-sectional area A. The 
element is in equilibrium between 
forces on either end. (b) When the 
piston moves inward at constant 
velocity vx due to an increased 
force on the left, the element also 
moves with the same velocity.

s

x

x

!P

!Pmax

smax

b

a

Figure 17.4 (a) Displacement 
amplitude and (b) pressure ampli-
tude versus position for a sinusoi-
dal longitudinal wave.
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Substitute the position function given by Equation 17.1:

DP 5 2B 
'
'x

3smax cos 1kx 2 vt 2 4 5 Bsmaxk  sin 1kx 2 vt 2
From this result, we see that a displacement described by a cosine function leads to 
a pressure described by a sine function. We also see that the displacement and pres-
sure amplitudes are related by

 DPmax 5 Bsmaxk (17.4)

This relationship depends on the bulk modulus of the gas, which is not as readily 
available as is the density of the gas. Once we determine the speed of sound in a gas 
in Section 17.2, we will be able to provide an expression that relates DPmax and smax 
in terms of the density of the gas.
 This discussion shows that a sound wave may be described equally well in terms 
of either pressure or displacement. A comparison of Equations 17.1 and 17.2 shows 
that the pressure wave is 908 out of phase with the displacement wave. Graphs of 
these functions are shown in Figure 17.4. The pressure variation is a maximum 
when the displacement from equilibrium is zero, and the displacement from equi-
librium is a maximum when the pressure variation is zero.

Q uick Quiz 17.1  If you blow across the top of an empty soft-drink bottle, a pulse 
of sound travels down through the air in the bottle. At the moment the pulse 
reaches the bottom of the bottle, what is the correct description of the displace-
ment of elements of air from their equilibrium positions and the pressure of the 
air at this point? (a) The displacement and pressure are both at a maximum.  
(b) The displacement and pressure are both at a minimum. (c) The displace-
ment is zero, and the pressure is a maximum. (d) The displacement is zero, and 
the pressure is a minimum.

17.2 Speed of Sound Waves
We now extend the discussion begun in Section 17.1 to evaluate the speed of sound 
in a gas. In Figure 17.5a, consider the cylindrical element of gas between the piston 
and the dashed line. This element of gas is in equilibrium under the influence of 
forces of equal magnitude, from the piston on the left and from the rest of the gas 
on the right. The magnitude of these forces is PA, where P is the pressure in the gas 
and A is the cross-sectional area of the tube.
 Figure 17.5b shows the situation after a time interval Dt during which the piston 
moves to the right at a constant speed vx due to a force from the left on the piston 
that has increased in magnitude to (P 1 DP)A. By the end of the time interval Dt, 
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Figure 17.5  (a) An undisturbed 
element of gas of length v  Dt in a 
tube of cross-sectional area A. The 
element is in equilibrium between 
forces on either end. (b) When the 
piston moves inward at constant 
velocity vx due to an increased 
force on the left, the element also 
moves with the same velocity.
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Figure 17.4 (a) Displacement 
amplitude and (b) pressure ampli-
tude versus position for a sinusoi-
dal longitudinal wave.

s(x, t) = smax cos(kx� !t)

�P = �Pmax sin(kx� !t)
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 12.4 Elastic Properties of Solids 375

As we shall see in Chapter 14, such a uniform distribution of forces occurs when an 
object is immersed in a fluid. An object subject to this type of deformation undergoes 
a change in volume but no change in shape. The volume stress is defined as the ratio 
of the magnitude of the total force F exerted on a surface to the area A of the sur-
face. The quantity P 5 F/A is called pressure, which we shall study in more detail in 
Chapter 14. If the pressure on an object changes by an amount DP 5 DF/A, the object 
experiences a volume change DV. The volume strain is equal to the change in volume 
DV divided by the initial volume Vi. Therefore, from Equation 12.5, we can character-
ize a volume (“bulk”) compression in terms of the bulk modulus, which is defined as

 B ;
volume stress
volume strain

5 2
DF/A
DV/Vi

5 2
DP

DV/Vi
 (12.8)

A negative sign is inserted in this defining equation so that B is a positive number. 
This maneuver is necessary because an increase in pressure (positive DP) causes a 
decrease in volume (negative DV) and vice versa.
 Table 12.1 lists bulk moduli for some materials. If you look up such values in a 
different source, you may find the reciprocal of the bulk modulus listed. The recip-
rocal of the bulk modulus is called the compressibility of the material.
 Notice from Table 12.1 that both solids and liquids have a bulk modulus. No 
shear modulus and no Young’s modulus are given for liquids, however, because a 
liquid does not sustain a shearing stress or a tensile stress. If a shearing force or a 
tensile force is applied to a liquid, the liquid simply flows in response.

Q uick Quiz 12.4  For the three parts of this Quick Quiz, choose from the fol-
lowing choices the correct answer for the elastic modulus that describes the 
relationship between stress and strain for the system of interest, which is in ital-
ics: (a) Young’s modulus (b) shear modulus (c) bulk modulus (d) none of those 
choices (i) A block of iron is sliding across a horizontal floor. The friction force 
between the sliding block and the floor causes the block to deform. (ii) A tra-
peze artist swings through a circular arc. At the bottom of the swing, the wires 
supporting the trapeze are longer than when the trapeze artist simply hangs 
from the trapeze due to the increased tension in them. (iii) A spacecraft carries 
a steel sphere to a planet on which atmospheric pressure is much higher than on 
the Earth. The higher pressure causes the radius of the sphere to decrease.

Prestressed Concrete
If the stress on a solid object exceeds a certain value, the object fractures. The max-
imum stress that can be applied before fracture occurs—called the tensile strength, 
compressive strength, or shear strength—depends on the nature of the material and 
on the type of applied stress. For example, concrete has a tensile strength of about  
2 3 106 N/m2, a compressive strength of 20 3 106 N/m2, and a shear strength of  
2 3 106 N/m2. If the applied stress exceeds these values, the concrete fractures. It is 
common practice to use large safety factors to prevent failure in concrete structures.
 Concrete is normally very brittle when it is cast in thin sections. Therefore, concrete 
slabs tend to sag and crack at unsupported areas as shown in Figure 12.15a. The slab 
can be strengthened by the use of steel rods to reinforce the concrete as illustrated 
in Figure 12.15b. Because concrete is much stronger under compression (squeezing) 
than under tension (stretching) or shear, vertical columns of concrete can support 

�W Bulk modulus

Figure 12.14 A cube is under 
uniform pressure and is therefore 
compressed on all sides by forces 
normal to its six faces. The arrow-
heads of force vectors on the sides 
of the cube that are not visible are 
hidden by the cube.
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Vi ! "V

Ftop
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Fback
S

Fright
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Fbottom
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Ffront
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Fleft
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The cube undergoes a change in 
volume but no change in shape.

a b c

Concrete Cracks
Load force Steel

reinforcing
rod

Steel rod
under

tension

Figure 12.15  (a) A concrete  
slab with no reinforcement tends  
to crack under a heavy load.  
(b) The strength of the concrete is 
increased by using steel reinforce-
ment rods. (c) The concrete is fur-
ther strengthened by prestressing 
it with steel rods under tension.
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As we shall see in Chapter 14, such a uniform distribution of forces occurs when an 
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a change in volume but no change in shape. The volume stress is defined as the ratio 
of the magnitude of the total force F exerted on a surface to the area A of the sur-
face. The quantity P 5 F/A is called pressure, which we shall study in more detail in 
Chapter 14. If the pressure on an object changes by an amount DP 5 DF/A, the object 
experiences a volume change DV. The volume strain is equal to the change in volume 
DV divided by the initial volume Vi. Therefore, from Equation 12.5, we can character-
ize a volume (“bulk”) compression in terms of the bulk modulus, which is defined as
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A negative sign is inserted in this defining equation so that B is a positive number. 
This maneuver is necessary because an increase in pressure (positive DP) causes a 
decrease in volume (negative DV) and vice versa.
 Table 12.1 lists bulk moduli for some materials. If you look up such values in a 
different source, you may find the reciprocal of the bulk modulus listed. The recip-
rocal of the bulk modulus is called the compressibility of the material.
 Notice from Table 12.1 that both solids and liquids have a bulk modulus. No 
shear modulus and no Young’s modulus are given for liquids, however, because a 
liquid does not sustain a shearing stress or a tensile stress. If a shearing force or a 
tensile force is applied to a liquid, the liquid simply flows in response.

Q uick Quiz 12.4  For the three parts of this Quick Quiz, choose from the fol-
lowing choices the correct answer for the elastic modulus that describes the 
relationship between stress and strain for the system of interest, which is in ital-
ics: (a) Young’s modulus (b) shear modulus (c) bulk modulus (d) none of those 
choices (i) A block of iron is sliding across a horizontal floor. The friction force 
between the sliding block and the floor causes the block to deform. (ii) A tra-
peze artist swings through a circular arc. At the bottom of the swing, the wires 
supporting the trapeze are longer than when the trapeze artist simply hangs 
from the trapeze due to the increased tension in them. (iii) A spacecraft carries 
a steel sphere to a planet on which atmospheric pressure is much higher than on 
the Earth. The higher pressure causes the radius of the sphere to decrease.

Prestressed Concrete
If the stress on a solid object exceeds a certain value, the object fractures. The max-
imum stress that can be applied before fracture occurs—called the tensile strength, 
compressive strength, or shear strength—depends on the nature of the material and 
on the type of applied stress. For example, concrete has a tensile strength of about  
2 3 106 N/m2, a compressive strength of 20 3 106 N/m2, and a shear strength of  
2 3 106 N/m2. If the applied stress exceeds these values, the concrete fractures. It is 
common practice to use large safety factors to prevent failure in concrete structures.
 Concrete is normally very brittle when it is cast in thin sections. Therefore, concrete 
slabs tend to sag and crack at unsupported areas as shown in Figure 12.15a. The slab 
can be strengthened by the use of steel rods to reinforce the concrete as illustrated 
in Figure 12.15b. Because concrete is much stronger under compression (squeezing) 
than under tension (stretching) or shear, vertical columns of concrete can support 
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to crack under a heavy load.  
(b) The strength of the concrete is 
increased by using steel reinforce-
ment rods. (c) The concrete is fur-
ther strengthened by prestressing 
it with steel rods under tension.

การเปลี่ยนแปลง
ของปริมาตร

การเปลี่ยนแปลง
ของความดัน
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 17.1 Pressure Variations in Sound Waves 509

ton is pushed into the tube. This compressed region, called a compression, moves 
through the tube, continuously compressing the region just in front of itself. When 
the piston is pulled back, the gas in front of it expands and the pressure and density 
in this region fall below their equilibrium values (represented by the lighter parts 
of the colored areas in Fig. 17.2). These low-pressure regions, called rarefactions, 
also propagate along the tube, following the compressions. Both regions move at 
the speed of sound in the medium.
 As the piston oscillates sinusoidally, regions of compression and rarefaction are 
continuously set up. The distance between two successive compressions (or two suc-
cessive rarefactions) equals the wavelength l of the sound wave. Because the sound 
wave is longitudinal, as the compressions and rarefactions travel through the tube, 
any small element of the gas moves with simple harmonic motion parallel to the 
direction of the wave. If s(x, t) is the position of a small element relative to its equi-
librium position,1 we can express this harmonic position function as

 s(x, t) 5 smax cos (kx 2 vt) (17.1)

where smax is the maximum position of the element relative to equilibrium. This 
parameter is often called the displacement amplitude of the wave. The parame-
ter k is the wave number, and v is the angular frequency of the wave. Notice that 
the displacement of the element is along x, in the direction of propagation of the 
sound wave.
 The variation in the gas pressure DP measured from the equilibrium value is 
also periodic with the same wave number and angular frequency as for the dis-
placement in Equation 17.1. Therefore, we can write

 DP 5 DPmax sin (kx 2 vt) (17.2)

where the pressure amplitude DPmax is the maximum change in pressure from the 
equilibrium value.
 Notice that we have expressed the displacement by means of a cosine function 
and the pressure by means of a sine function. We will justify this choice in the 
procedure that follows and relate the pressure amplitude Pmax to the displacement 
amplitude smax. Consider the piston–tube arrangement of Figure 17.1 once again. 
In Figure 17.3a, we focus our attention on a small cylindrical element of undis-
turbed gas of length Dx and area A. The volume of this element is Vi 5 A Dx.
 Figure 17.3b shows this element of gas after a sound wave has moved it to a new 
position. The cylinder’s two flat faces move through different distances s1 and s2.  
The change in volume DV of the element in the new position is equal to A Ds, 
where Ds 5 s1 2 s2.
 From the definition of bulk modulus (see Eq. 12.8), we express the pressure vari-
ation in the element of gas as a function of its change in volume:

DP 5 2B 
DV
Vi

Let’s substitute for the initial volume and the change in volume of the element:

DP 5 2B 
A Ds
A Dx

Let the length Dx of the cylinder approach zero so that the ratio Ds/Dx becomes a 
partial derivative:

 DP 5 2B 
's
'x

 (17.3)

Area A

Undisturbed gas

!x

s1

s2b

a

Figure 17.3  (a) An undisturbed 
element of gas of length Dx in a 
tube of cross-sectional area A.  
(b) When a sound wave propagates 
through the gas, the element is 
moved to a new position and has a 
different length. The parameters 
s1 and s2 describe the displace-
ments of the ends of the element 
from their equilibrium positions.

1We use s(x, t) here instead of y(x, t) because the displacement of elements of the medium is not perpendicular to 
the x direction.

s(x, t) = smax cos(kx� !t)

�P = �Pmax sin(kx� !t)

�P = �B
�V

Vi

= �B
A�s

A�x

= �B
@s

@x
= Bsmaxk sin(kx� !t)
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Substitute the position function given by Equation 17.1:

DP 5 2B 
'
'x

3smax cos 1kx 2 vt 2 4 5 Bsmaxk  sin 1kx 2 vt 2
From this result, we see that a displacement described by a cosine function leads to 
a pressure described by a sine function. We also see that the displacement and pres-
sure amplitudes are related by

 DPmax 5 Bsmaxk (17.4)

This relationship depends on the bulk modulus of the gas, which is not as readily 
available as is the density of the gas. Once we determine the speed of sound in a gas 
in Section 17.2, we will be able to provide an expression that relates DPmax and smax 
in terms of the density of the gas.
 This discussion shows that a sound wave may be described equally well in terms 
of either pressure or displacement. A comparison of Equations 17.1 and 17.2 shows 
that the pressure wave is 908 out of phase with the displacement wave. Graphs of 
these functions are shown in Figure 17.4. The pressure variation is a maximum 
when the displacement from equilibrium is zero, and the displacement from equi-
librium is a maximum when the pressure variation is zero.

Q uick Quiz 17.1  If you blow across the top of an empty soft-drink bottle, a pulse 
of sound travels down through the air in the bottle. At the moment the pulse 
reaches the bottom of the bottle, what is the correct description of the displace-
ment of elements of air from their equilibrium positions and the pressure of the 
air at this point? (a) The displacement and pressure are both at a maximum.  
(b) The displacement and pressure are both at a minimum. (c) The displace-
ment is zero, and the pressure is a maximum. (d) The displacement is zero, and 
the pressure is a minimum.

17.2 Speed of Sound Waves
We now extend the discussion begun in Section 17.1 to evaluate the speed of sound 
in a gas. In Figure 17.5a, consider the cylindrical element of gas between the piston 
and the dashed line. This element of gas is in equilibrium under the influence of 
forces of equal magnitude, from the piston on the left and from the rest of the gas 
on the right. The magnitude of these forces is PA, where P is the pressure in the gas 
and A is the cross-sectional area of the tube.
 Figure 17.5b shows the situation after a time interval Dt during which the piston 
moves to the right at a constant speed vx due to a force from the left on the piston 
that has increased in magnitude to (P 1 DP)A. By the end of the time interval Dt, 

Undisturbed gas

Undisturbed gas

Compressed gas

v !t

vx !tb

a

(P " !P)A î

PA î
#PA î

vx î
#PA î

Figure 17.5  (a) An undisturbed 
element of gas of length v  Dt in a 
tube of cross-sectional area A. The 
element is in equilibrium between 
forces on either end. (b) When the 
piston moves inward at constant 
velocity vx due to an increased 
force on the left, the element also 
moves with the same velocity.

s

x

x

!P

!Pmax

smax

b

a

Figure 17.4 (a) Displacement 
amplitude and (b) pressure ampli-
tude versus position for a sinusoi-
dal longitudinal wave.
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which the pebble is dropped to the position of the object. This feature is central to wave 
motion: energy is transferred over a distance, but matter is not.

16.1 Propagation of a Disturbance
The introduction to this chapter alluded to the essence of wave motion: the trans-
fer of energy through space without the accompanying transfer of matter. In the list 
of energy transfer mechanisms in Chapter 8, two mechanisms—mechanical waves 
and electromagnetic radiation—depend on waves. By contrast, in another mecha-
nism, matter transfer, the energy transfer is accompanied by a movement of matter 
through space with no wave character in the process.
 All mechanical waves require (1) some source of disturbance, (2) a medium con-
taining elements that can be disturbed, and (3) some physical mechanism through 
which elements of the medium can influence each other. One way to demonstrate 
wave motion is to flick one end of a long string that is under tension and has its 
opposite end fixed as shown in Figure 16.1. In this manner, a single bump (called 
a pulse) is formed and travels along the string with a definite speed. Figure 16.1 
represents four consecutive “snapshots” of the creation and propagation of the trav-
eling pulse. The hand is the source of the disturbance. The string is the medium 
through which the pulse travels—individual elements of the string are disturbed 
from their equilibrium position. Furthermore, the elements of the string are con-
nected together so they influence each other. The pulse has a definite height and a 
definite speed of propagation along the medium. The shape of the pulse changes 
very little as it travels along the string.1
 We shall first focus on a pulse traveling through a medium. Once we have explored 
the behavior of a pulse, we will then turn our attention to a wave, which is a periodic 
disturbance traveling through a medium. We create a pulse on our string by flicking 
the end of the string once as in Figure 16.1. If we were to move the end of the string 
up and down repeatedly, we would create a traveling wave, which has characteristics 
a pulse does not have. We shall explore these characteristics in Section 16.2.
 As the pulse in Figure 16.1 travels, each disturbed element of the string moves in 
a direction perpendicular to the direction of propagation. Figure 16.2 illustrates this 
point for one particular element, labeled P. Notice that no part of the string ever 
moves in the direction of the propagation. A traveling wave or pulse that causes 
the elements of the disturbed medium to move perpendicular to the direction of 
propagation is called a transverse wave.
 Compare this wave with another type of pulse, one moving down a long, stretched 
spring as shown in Figure 16.3. The left end of the spring is pushed briefly to the 
right and then pulled briefly to the left. This movement creates a sudden compres-
sion of a region of the coils. The compressed region travels along the spring (to 
the right in Fig. 16.3). Notice that the direction of the displacement of the coils is 
parallel to the direction of propagation of the compressed region. A traveling wave 
or pulse that causes the elements of the medium to move parallel to the direction 
of propagation is called a longitudinal wave.

As the pulse moves along the 
string, new elements of the 
string are displaced from their 
equilibrium positions.

Figure 16.1  A hand moves the 
end of a stretched string up and 
down once (red arrow), causing a 
pulse to travel along the string.

1In reality, the pulse changes shape and gradually spreads out during the motion. This effect, called dispersion, is com-
mon to many mechanical waves as well as to electromagnetic waves. We do not consider dispersion in this chapter.

The direction of the displacement 
of any element at a point P on the 
string is perpendicular to the 
direction of propagation (red 
arrow).

P

P

P

Figure 16.2  The displacement 
of a particular string element for 
a transverse pulse traveling on a 
stretched string.

As the pulse passes by, the 
displacement of the coils is parallel to 
the direction of the propagation.

The hand moves forward 
and back once to create 
a longitudinal pulse.

Figure 16.3  A longitudinal 
pulse along a stretched spring.
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ความเข้มเสียงนิยามโดย

I =
P

A

อัตราการส่งผ่านพลังงาน

พื้นที่ซึ่งเสียงตกกระทบ

I =
1

2
⇢v!2s2max

ระดับเสียงนิยามโดย

� = 10 log
I

I0

I0 = 1.0⇥ 10�12 W/m2
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เครื่องจักรสองเครื่องวางห่างจากคนทำงานเป็นระยะทางเท่ากัน โดยแต่ละ
เครื่องให้ความเข้มเสียงบริเวณที่คนทำงานเท่ากับ 2.0 x 10-7 W/m2


(1) จงหาระดับเสียงที่คนทำงานจะได้ยินเมื่อเครื่องจักรเครื่องที่หนึ่งทำงาน


(2) จงหาระดับเสียงที่คนทำงานจะได้ยินเมื่อเครื่องจักรทั้งสองเครื่อง
ทำงาน
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ผู้สังเกตุอยู่นิ่ง แหล่งกำเนิดเสียงเคลื่อนที่ ผู้สังเกตุเคลื่อนที่

แหล่งกำเนิดเสียงอยู่นิ่ง

v

vo

vs

= ความเร็วเสียง
= ความเร็วของผู้สังเกต
= ความเร็วของแหล่งกำเนิด

เมื่อต้นกำเนิดเสียงและผู้สังเกตมีการเคลื่อนที่สัมพัทธ์กัน ผู้สังเกตจะได้รับ
คลื่นที่มีความถี่ต่างไปจากการการที่ต้นกำเนิดเสียงและผู้สังเกตอยู่นิ่ง
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vs

ความเร็วของคลื่นขึ้นอยู่กับตัวกลางเท่านั้น
ไม่ได้เปลี่ยนไปเพราะ Source เคลื่อนที่

f 0 =
v

�0

=
v

�⌥ vs
f

= f
v

�f ⌥ vs

= f
1

1⌥ vs
v

�0 = �⌥ vsT

= �⌥ vs
f

- คือ Source วิ่งเข้าหาเรา

+ คือ Source วิ่งออกจากเรา
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ความยาวคลื่นไม่เปลี่ยนแปลง

f 0 =
v ± v0

�

= f
v ± v0

v

= f(1± v0
v
)

+ คือเราวิ่งเข้าหา Source

- คือเราวิ่งออกจาก Source

v

vo

vs

v

vo

vs
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vs

v

vo

vs

v

vo

vs

f 0 = f

✓
v ± v0
v ⌥ vs

◆

-vs คือ Source วิ่งเข้าหาเรา

+vs คือ Source วิ่งออกจากเรา

+vo คือเราวิ่งเข้าหา Source

-vo คือเราวิ่งออกจาก Source
}ดูสถานการณ์ให้ดี อะไรวิ่งยังไง

ใช้ Common sense

เวลา Source วิ่ง ความถี่ที่เข้าหาเราเป็นอย่างไร
เวลาเราวิ่งเข้าหา Source ความถี่จะเป็นอย่างไร
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นักประดาน้ำกลุ่ม ก  ว่ายน้ำไปด้วยความเร็ว 8 m/s และปล่อยคลื่นโซน่าร์ 
(SONAR, SOund Navigation And Ranging) ด้วยความถี่ 1400 Hz 
ให้ความเร็วในการเคลื่อนที่ของเสียงใต้น้ำเป็น 1533 Hz จงหาว่า


(1) เมื่อมีกลุ่มนักประดาน้ ข ว่ายน้ำเข้าหากลุ่ม ก ด้วยความเร็ว 9 m/s 
ความถี่ของคลื่นโซน่าร์ที่กลุ่ม ข จะรับได้มีค่าเท่าใด


(2) หากทั้งสองกลุ่มคลาดกัน และว่ายออกห่างจากกัน ความถี่ของคลื่น  
โซน่าร์ที่กลุ่ม ข จะรับได้มีค่าเท่าใด
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สูตรของ Doppler จะไม่สามารถใช้ได้เมื่อ vo,vs เคลื่อนที่เร็วกว่าคลื่น

•พิจารณาเมื่อ Observer เคลื่อนที่เร็วกว่าเสียง

•พิจารณาเมื่อ Source เคลื่อนที่เร็วกว่าเสียง        Supersonic

Mach number M ⌘ vs
v

Zone of silence

Zone of action

vt

vst
vt

vst
✓

sin ✓ =
vt

vst
=

1

M

จาก Mach cone

เมื่อขอบของ Mach cone

สัมผัสกับพื้นผิว   Sonic boom



N. Srimanobhas; Wave motion and sound waves

More on doppler 

59

พิจารณาเมื่อ Source เคลื่อนที่เป็น
วงกลมด้วยความเร็วเชิงมุม    คงที่

R

f 0 > f

f 0 < f

f 0 > f

f 0 < f

Observer

ทำการบันทึกเสียงที่ได้ยิน

f 0 > f

f 0 < f

t

f 0 > f

f 0 < f

!

f 0 = f

จากที่เราบันทึก เราสามารถหาค่า T, vs, R

ประยุกต์ใช้กับงานด้านดาราศาสตร์ (ต้องการ Special relativity)

vo

T =
2⇡

!


