Review: Diffraction

Review: Diffraction

Review: Diffraction

Review: Diffraction

Exercise-1: Diffraction patterns from narrow slits

A screen is placed 50.0 cm from a single slit, which is illuminated with light of wavelength 690 nm . If the distance between the first and third minima in the diffraction pattern is 3.00 mm , what is the width of the slit?

Exercise-2: Diffraction patterns from narrow slits

Suppose light strikes a single slit of width a at an angle β from the perpendicular direction as shown in the figure. Show that the condition for destructive interference, must be modified to read $\sin \theta_{\text {dark }}=m \frac{\lambda}{a}-\sin \beta$; where $m= \pm 1, \pm 2, \ldots$

Exercise-3: Circular aperture and resolution

The angular resolution of a radio telescope is to be 0.100° when the incident waves have a wavelength of 3.00 mm . What minimum diameter is required for the telescope's receiving dish?

Exercise-4: Circular aperture and resolution

A circular radar antenna on a Coast Guard ship has a diameter of 2.10 m and radiates at a frequency of 15.0 GHz . Two small boats are located 9.00 km away from the ship. How close together could the boats be and still be detected as two objects?

Exercise-5: Diffraction grating

A helium-neon laser ($\lambda=632.8 \mathrm{~nm}$) is used to calibrate a diffraction grating. If the first-order maximum occurs at 20.5°, what is the spacing between adjacent grooves in the grating?

Exercise-6: Diffraction grating

Light of wavelength 500 nm is incident normally on a diffraction grating. If the thirdorder maximum of the diffraction pattern is observed at 32.0°, (a) what is the number of rulings per centimeter for the grating? (b) Determine the total number of primary maxima that can be observed in this situation.

Exercise-7: Polarization of light waves

The critical angle for total internal reflection for sapphire surrounded by air is 34.4°. Calculate the polarizing angle for sapphire.

Exercise-8: Polarization of light waves

Three polarizing plates whose planes are parallel are centered on a common axis. The directions of the transmission axes relative to the common vertical direction are shown in the figure. A linearly polarized beam of light with plane of polarization parallel to the vertical reference direction is incident from the left onto the first disk with intensity $I_{i}=10.0$ units (arbitrary). Calculate the transmitted intensity I_{f} when $\theta_{1}=20.0^{\circ}, \theta_{2}=40.0^{\circ}$, and $\theta_{3}=60.0^{\circ}$.

