Review: Electromagnetic Waves

Exercise-1 [Displacement current \& general form of Ampere's law]

Consider the situation as shown in the figure. An electric field of $300 \mathrm{~V} / \mathrm{m}$ is confined to a circular area $d=10.0 \mathrm{~cm}$ in diameter and directed outward perpendicular to the plane of the figure. If the field is increasing at a rate of $20.0 \mathrm{~V} / \mathrm{m} \cdot \mathrm{s}$, what are the direction and the magnitude of
 the magnetic field at the point $P, r=15.0 \mathrm{~cm}$ from the center of the circle?

Exercise-2 [Plane EM waves]

In SI units, an electromagnetic wave has an electric field described by
$\vec{E}=\hat{k} 1000 \sin (20 y+\omega t)$
-What is the angular frequency ω ?

- What is the frequency f ?
- What is the direction of \vec{E} ?
- What is \vec{B} ?
-What is the average energy density and average intensity?

Exercise-3 [Energy carried by EM Waves]

In the region of free space, the electric girls at an instant of time is $\vec{E}=(80.0 \hat{i}+32.0 \hat{j}-64.0 \hat{k}) \mathrm{N} / \mathrm{C}$ and the magnetic girls is
$\vec{B}=(0.200 \hat{i}+0.0808 \hat{j}+0.290 \hat{k}) \mu \mathrm{T}$.

- Show that the two fields are perpendicular to each other
- Determine the Poynting vector for these fields

Exercise-4 [Energy carried by EM Waves]

Assuming the antenna of a 10.0 kW radio station radiates spherical electromagnetic waves, compute the maximum value of the magnetic field 5.00 km from the antenna.

Exercise-5 [Momentum and radiation pressure]

A 15.0 mW helium-neon laser emits a beam of circular cross section with a diameter of 2.00 mm .

- Find the maximum electric field in the beam
- What total energy is contained in a 1.00 m length of the beam
- Find the momentum carried by a 1.00 m length of the beam

