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How to measure the speed of light

Galileo	Galilei

Ole	Rømer
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[Wiki]	Sidereus	Nuncius,	the	first	published	scien6fic	
work	based	on	observa6ons	made	through	a	telescope,	

and	it	contains	the	results	of	Galileo's	early	

observa6ons	of	the	imperfect	and	mountainous	Moon,	

the	hundreds	of	stars	that	were	unable	to	be	seen	in	

either	the	Milky	Way	or	certain	constella6ons	with	the	

naked	eye,	and	the	Medicean	Stars	(later	Galilean	

moons)	that	appeared	to	be	circling	Jupiter.

Chris3aan	Huygens
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Review: Wave function and wave equation

 16.1 Propagation of a Disturbance 485

 Sound waves, which we shall discuss in Chapter 17, are another example of lon-
gitudinal waves. The disturbance in a sound wave is a series of high-pressure and 
low-pressure regions that travel through air.
 Some waves in nature exhibit a combination of transverse and longitudinal 
displacements. Surface-water waves are a good example. When a water wave trav-
els on the surface of deep water, elements of water at the surface move in nearly 
circular paths as shown in Figure 16.4. The disturbance has both transverse and 
longitudinal components. The transverse displacements seen in Figure 16.4 rep-
resent the variations in vertical position of the water elements. The longitudinal 
displacements represent elements of water moving back and forth in a horizontal 
direction.
 The three-dimensional waves that travel out from a point under the Earth’s sur-
face at which an earthquake occurs are of both types, transverse and longitudinal. 
The longitudinal waves are the faster of the two, traveling at speeds in the range of 
7 to 8 km/s near the surface. They are called P waves, with “P” standing for primary, 
because they travel faster than the transverse waves and arrive first at a seismo-
graph (a device used to detect waves due to earthquakes). The slower transverse 
waves, called S waves, with “S” standing for secondary, travel through the Earth at 
4 to 5 km/s near the surface. By recording the time interval between the arrivals 
of these two types of waves at a seismograph, the distance from the seismograph to 
the point of origin of the waves can be determined. This distance is the radius of an 
imaginary sphere centered on the seismograph. The origin of the waves is located 
somewhere on that sphere. The imaginary spheres from three or more monitoring 
stations located far apart from one another intersect at one region of the Earth, 
and this region is where the earthquake occurred.
 Consider a pulse traveling to the right on a long string as shown in Figure 16.5. 
Figure 16.5a represents the shape and position of the pulse at time t 5 0. At this 
time, the shape of the pulse, whatever it may be, can be represented by some math-
ematical function that we will write as y(x, 0) 5 f(x). This function describes the 
transverse position y of the element of the string located at each value of x at time 
t 5 0. Because the speed of the pulse is v, the pulse has traveled to the right a 
distance vt at the time t (Fig. 16.5b). We assume the shape of the pulse does not 
change with time. Therefore, at time t, the shape of the pulse is the same as it was 
at time t 5 0 as in Figure 16.5a. Consequently, an element of the string at x at this 
time has the same y position as an element located at x 2 vt had at time t 5 0:

 y(x, t) 5 y(x 2 vt, 0)

 In general, then, we can represent the transverse position y for all positions and 
times, measured in a stationary frame with the origin at O, as

 y(x, t) 5 f(x 2 vt) (16.1)

Similarly, if the pulse travels to the left, the transverse positions of elements of the 
string are described by

 y(x, t) 5 f(x 1 vt) (16.2)

 The function y, sometimes called the wave function, depends on the two vari-
ables x and t. For this reason, it is often written y(x, t), which is read “y as a function 
of x and t.”
 It is important to understand the meaning of y. Consider an element of the 
string at point P in Figure 16.5, identified by a particular value of its x coordinate. 
As the pulse passes through P, the y coordinate of this element increases, reaches 
a maximum, and then decreases to zero. The wave function y(x, t) represents the 
y coordinate—the transverse position—of any element located at position x at any 
time t. Furthermore, if t is fixed (as, for example, in the case of taking a snapshot of 
the pulse), the wave function y(x), sometimes called the waveform, defines a curve 
representing the geometric shape of the pulse at that time.

Figure 16.4 The motion of 
water elements on the surface 
of deep water in which a wave 
is propagating is a combination 
of transverse and longitudinal 
displacements. 

The elements at the surface move 
in nearly circular paths. Each 
element is displaced both 
horizontally and vertically from its 
equilibrium position.
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At t ! 0,  the shape of the 
pulse is given by y ! f(x).

At some later time t, the shape 
of the pulse remains unchanged 
and the vertical position of an 
element of the medium at any 
point P is given by y ! f(x " vt).
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Figure 16.5  A one-dimensional 
pulse traveling to the right on a 
string with a speed v.
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Example
Show	that	the	following	func6ons	are	possible	solu6ons	of	wave	equa6on:

(a) y(x, t) = ln[b(x� vt)]

(b) y(x, t) = eb(x�vt)

(c) y(x, t) = x2 + v2t2
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Ray optics and wave optics
A	plane	wave	of	wavelength	 	is	incident	on	a	barrier	in	which	there	is	an	

opening	of	diameter	 .	

λ
d
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Huygens's principle

All	points	on	a	given	wave	

front	are	taken	as	point	

sources	for	the	produc6on	of	

spherical	secondary	waves,	

called	wavelets,	that	

propagate	outward	through	a	

medium	with	speeds	

characteris6c	of	wages	in	that	

medium.	A\er	some	6me	

interval	has	passed,	the	new	

posi6on	of	the	wave	front	is	

the	surface	tangent	to	the	

wavelets.
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Wave equation, wave function and intensity
Consider	the	following	situa6on,	and	we	try	to	

describe	by	using	wave	equa6on,	wave	func6on	

and	defini6on	of	intensity	we	have	discussed	

before.
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Superposition of 2 waves
Start	with	2	waves	with	the	following	wave	func6ons:	 	and	

.	Using	the	superposi6on	principle,	what	will	you	get?

ψ1 = A sin(ωt)
ψ2 = A sin(ωt + ϕ)
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Waves in interference
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Young's double-slit experiment
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Light intensity for double-slit interference pattern

hBps://phet.colorado.edu/sims/html/wave-interference/latest/wave-interference_en.html

https://phet.colorado.edu/sims/html/wave-interference/latest/wave-interference_en.html

