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XN. Srimanobhas; Kinetic theory of gas

Molecular model of an ideal gas
We will discuss the link between macroscopic and microscopic 
of an idea gas. In Kinetic theory ( Newtonian mechanics ), we 
consider that 
• Gas consists of identical “point” molecules of mass m. 
• No interaction between molecules, except when they collide. 
• Random motion. 
• Collisions with wall are elastic.
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21.1 Molecular Model of an Ideal Gas
In this chapter, we will investigate a structural model for an ideal gas. A structural 
model is a theoretical construct designed to represent a system that cannot be 
observed directly because it is too large or too small. For example, we can only 
observe the solar system from the inside; we cannot travel outside the solar system 
and look back to see how it works. This restricted vantage point has led to different 
historical structural models of the solar system: the geocentric model, with the Earth at 
the center, and the heliocentric model, with the Sun at the center. Of course, the latter 
has been shown to be correct. An example of a system too small to observe directly 
is the hydrogen atom. Various structural models of this system have been devel-
oped, including the Bohr model (Section 42.3) and the quantum model (Section 42.4). 
Once a structural model is developed, various predictions are made for experimen-
tal observations. For example, the geocentric model of the solar system makes pre-
dictions of how the movement of Mars should appear from the Earth. It turns out 
that those predictions do not match the actual observations. When that occurs with 
a structural model, the model must be modified or replaced with another model.
 The structural model that we will develop for an ideal gas is called kinetic the-
ory. This model treats an ideal gas as a collection of molecules with the following 
properties:

 1. Physical components: 
  The gas consists of a number of identical molecules within a cubic con-

tainer of side length d. The number of molecules in the gas is large, and the 
average separation between them is large compared with their dimensions. 
Therefore, the molecules occupy a negligible volume in the container. This 
assumption is consistent with the ideal gas model, in which we imagine the 
molecules to be point-like.

 2. Behavior of the components: 
  (a)  The molecules obey Newton’s laws of motion, but as a whole their motion 

is isotropic: any molecule can move in any direction with any speed. 
  (b)  The molecules interact only by short-range forces during elastic colli-

sions. This assumption is consistent with the ideal gas model, in which 
the molecules exert no long-range forces on one another. 

  (c)  The molecules make elastic collisions with the walls.

Although we often picture an ideal gas as consisting of single atoms, the behavior of 
molecular gases approximates that of ideal gases rather well at low pressures. Usu-
ally, molecular rotations or vibrations have no effect on the motions considered here.
 For our first application of kinetic theory, let us relate the macroscope variable 
of pressure P to microscopic quantities. Consider a collection of N molecules of an 
ideal gas in a container of volume V. As indicated above, the container is a cube 
with edges of length d (Fig. 21.1). We shall first focus our attention on one of these 
molecules of mass m0 and assume it is moving so that its component of velocity in 
the x direction is vxi as in Figure 21.2. (The subscript i here refers to the ith mol-
ecule in the collection, not to an initial value. We will combine the effects of all the 
molecules shortly.) As the molecule collides elastically with any wall (property 2(c) 
above), its velocity component perpendicular to the wall is reversed because the 
mass of the wall is far greater than the mass of the molecule. The molecule is mod-
eled as a nonisolated system for which the impulse from the wall causes a change in 
the molecule’s momentum. Because the momentum component pxi of the molecule 
is m0vxi before the collision and 2m0vxi after the collision, the change in the x com-
ponent of the momentum of the molecule is

 Dpxi 5 2m0vxi 2 (m0vxi) 5 22m0vxi (21.1)
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Figure 21.1  A cubical box with 
sides of length d containing an 
ideal gas. 

Figure 21.2 A molecule makes 
an elastic collision with the wall 
of the container. In this construc-
tion, we assume the molecule 
moves in the xy plane.
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reversed, whereas 
its y component 
remains 
unchanged.
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Molecular model of an ideal gas

F̄i,on molecule = �2m0vxi
�t

= �m0v2xi
d

Apply the impulse-momentum theorem:

�t =
2d

vxi

Interval between 2 
collisions with the 

same wall
By Newton's third law, the component of the long term average 
force exerted by the molecule on the wall:

F̄i,on wall =
m0v2xi

d
Consider a very large number of molecules:

F =
m0

d

nX

i=1

v2xi
Average force is the same 

over any time interval

N. Srimanobhas; Kinetic theory of gas 4
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Molecular model of an ideal gas
Consider the average value of the square of the x component of 
the velocity for N molecules:

nX

i=1

v2xi = Nv2x

Substitute it back to the force we get before

F =
m0

d
Nv2x

Consider now the three components of velocity  
(for each molecule)

v2i = v2xi + v2yi + v2zi

v2 = v2x + v2y + v2z

v2 = 3v2x
Assumption that gas 
motion is an isotropic

Average

N. Srimanobhas; Kinetic theory of gas 5
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Molecular model of an ideal gas
Consider the total pressure exerted on the wall:

P =
F

A
=

F

d2
=

1

3
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m0v2

=
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✓
N

V

◆
(
1

2
m0v2)

You now have the link between macroscopic world (pressure) 
with microscopic world (K.E.) of the gas molecules. What can 
you tell from this equation? Does the pressure depend on the 
type of gas?

Average K.E.

N. Srimanobhas; Kinetic theory of gas 6
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Molecular model of an ideal gas
Molecular interpretation of temperature

1

2
m0v2 =

3

2
kBT

What can you tell from this equation?

N. Srimanobhas; Kinetic theory of gas 7
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Theorem of equipartition of energy 

Each degree of freedom contributes  to the energy of a 

system, where possible degrees of freedom are those 
associated with translation, rotation, and vibration of molecules. 

1
2

kBT

N. Srimanobhas; Kinetic theory of gas 8
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Molecular model of an ideal gas

Ktot,trans = N(
1

2
m0v2)

=
3

2
NkBT

=
3

2
nRT

The total kinetic energy (N molecules):

root-mean-square (rms) speed:

vrms =

r
3kbT

m0
=

r
3RT

M

N. Srimanobhas; Kinetic theory of gas 9

This expression shows that, at a given temperature, lighter 
molecules move faster, on the average, than do heavier 
molecules.
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Example
What is the total translational kinetic energy of Neon gas with 
mass 1 gram at 30°C (Atomic mass of Neon is 20.18u)

N. Srimanobhas; Kinetic theory of gas 10
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Molar specific heat of an ideal gas
We will review this topic again when we 
talk about the first law of Thermodynamics. 

Consider an ideal gas undergoing several 
processes such that the change in 
temperature is . We normally 
consider 2 cases:  
•Constant volume  
•Constant pressure

ΔT = Tf − Ti

632 Chapter 21 The Kinetic Theory of Gases

by taking a variety of paths from one isotherm to another as shown in Figure 21.3. 
Because DT is the same for all paths, the change in internal energy DE int is the 
same for all paths. The work W done on the gas (the negative of the area under 
the curves), however, is different for each path. Therefore, from the first law of 
thermodynamics, we can argue that the heat Q 5 DE int 2 W associated with a given 
change in temperature does not have a unique value as discussed in Section 20.4.
 We can address this difficulty by defining specific heats for two special processes 
that we have studied: isovolumetric and isobaric. Because the number of moles n 
is a convenient measure of the amount of gas, we define the molar specific heats 
associated with these processes as follows:

 Q 5 nCV DT (constant volume) (21.23)

 Q 5 nCP DT (constant pressure) (21.24)

where CV is the molar specific heat at constant volume and CP is the molar spe-
cific heat at constant pressure. When energy is added to a gas by heat at constant 
pressure, not only does the internal energy of the gas increase, but (negative) work 
is done on the gas because of the change in volume required to keep the pres-
sure constant. Therefore, the heat Q in Equation 21.24 must account for both the 
increase in internal energy and the transfer of energy out of the system by work. 
For this reason, Q is greater in Equation 21.24 than in Equation 21.23 for given val-
ues of n and DT. Therefore, CP is greater than CV .
 In the previous section, we found that the temperature of a gas is a measure of 
the average translational kinetic energy of the gas molecules. This kinetic energy 
is associated with the motion of the center of mass of each molecule. It does not 
include the energy associated with the internal motion of the molecule, namely, 
vibrations and rotations about the center of mass. That should not be surprising 
because the simple kinetic theory model assumes a structureless molecule.
 So, let’s first consider the simplest case of an ideal monatomic gas, that is, a gas 
containing one atom per molecule such as helium, neon, or argon. When energy 
is added to a monatomic gas in a container of fixed volume, all the added energy 
goes into increasing the translational kinetic energy of the atoms. There is no other 
way to store the energy in a monatomic gas. Therefore, from Equation 21.21, we see 
that the internal energy E int of N molecules (or n mol) of an ideal monatomic gas is

 E int 5 K tot trans 5 3
2NkBT 5 3

2nRT  (21.25)

For a monatomic ideal gas, E int is a function of T only and the functional relation-
ship is given by Equation 21.25. In general, the internal energy of any ideal gas is a 
function of T only and the exact relationship depends on the type of gas.
 If energy is transferred by heat to a system at constant volume, no work is done 
on the system. That is, W 5 2e P dV 5 0 for a constant-volume process. Hence, from 
the first law of thermodynamics,
 Q 5 DE int (21.26)

In other words, all the energy transferred by heat goes into increasing the inter-
nal energy of the system. A constant-volume process from i to f for an ideal gas is 
described in Figure 21.4, where DT is the temperature difference between the two 
isotherms. Substituting the expression for Q given by Equation 21.23 into Equation 
21.26, we obtain
 DE int 5 nCV  DT (21.27)

This equation applies to all ideal gases, those gases having more than one atom per 
molecule as well as monatomic ideal gases. 
 In the limit of infinitesimal changes, we can use Equation 21.27 to express the 
molar specific heat at constant volume as

 CV 5
1
n 

dE int

dT
 (21.28)

 Internal energy of an ideal X
 monatomic gas

P

V

Isotherms

i

f

f !

T " #T

f $

T

Figure 21.3  An ideal gas is taken 
from one isotherm at temperature 
T to another at temperature T 1 
DT along three different paths.
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Eint = Ktot,trans =
3
2

nRT =
3
2

NkBT

Start with simplest case when energy is added to the ideal 
monatomic gas:

What will happen to the system?
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For the constant-volume 
path, all the energy input 
goes into increasing the 
internal energy of the gas 
because no work is done.

Along the constant-pressure 
path, part of the energy 
transferred in by heat is 
transferred out by work.

Figure 21.4 Energy is trans-
ferred by heat to an ideal gas in 
two ways.

Let’s now apply the results of this discussion to a monatomic gas. Substituting the 
internal energy from Equation 21.25 into Equation 21.28 gives

 CV 5 3
2R 5 12.5 J/mol # K  (21.29)

This expression predicts a value of CV 5 3
2R  for all monatomic gases. This predic-

tion is in excellent agreement with measured values of molar specific heats for such 
gases as helium, neon, argon, and xenon over a wide range of temperatures (Table 
21.2). Small variations in Table 21.2 from the predicted values are because real 
gases are not ideal gases. In real gases, weak intermolecular interactions occur, 
which are not addressed in our ideal gas model.
 Now suppose the gas is taken along the constant-pressure path i S f 9 shown in 
Figure 21.4. Along this path, the temperature again increases by DT. The energy 
that must be transferred by heat to the gas in this process is Q 5 nCP DT. Because 
the volume changes in this process, the work done on the gas is W 5 2P DV, where 
P is the constant pressure at which the process occurs. Applying the first law of 
thermodynamics to this process, we have

 DE int 5 Q 1 W 5 nCP DT 1 (2P DV) (21.30)

In this case, the energy added to the gas by heat is channeled as follows. Part of it 
leaves the system by work (that is, the gas moves a piston through a displacement), 
and the remainder appears as an increase in the internal energy of the gas. The 
change in internal energy for the process i S f 9, however, is equal to that for the pro-
cess i S f because E int depends only on temperature for an ideal gas and DT is the 
same for both processes. In addition, because PV 5 nRT, note that for a constant- 
pressure process, P DV 5 nR DT. Substituting this value for P DV into Equation 
21.30 with DE int 5 nCV DT (Eq. 21.27) gives

 nCV DT 5 nCP DT 2 nR DT 

 CP 2 CV 5 R (21.31)

This expression applies to any ideal gas. It predicts that the molar specific heat of an 
ideal gas at constant pressure is greater than the molar specific heat at constant vol-
ume by an amount R, the universal gas constant (which has the value 8.31 J/mol ? K). 
This expression is applicable to real gases as the data in Table 21.2 show.

Table 21.2 Molar Specific Heats of Various Gases
Molar Specific Heat ( J/mol ? K)a

Gas CP CV CP  2 CV g 5 CP/CV

Monatomic gases
He 20.8 12.5 8.33 1.67
Ar 20.8 12.5 8.33 1.67
Ne 20.8 12.7 8.12 1.64
Kr 20.8 12.3 8.49 1.69

Diatomic gases
H2 28.8 20.4 8.33 1.41
N2 29.1 20.8 8.33 1.40
O2 29.4 21.1 8.33 1.40
CO 29.3 21.0 8.33 1.40
Cl2 34.7 25.7 8.96 1.35

Polyatomic gases
CO2 37.0 28.5 8.50 1.30
SO2 40.4 31.4 9.00 1.29
H2O 35.4 27.0 8.37 1.30
CH4 35.5 27.1 8.41 1.31

a All values except that for water were obtained at 300 K.

N. Srimanobhas; Kinetic theory of gas 12
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In case of constant volume: 

 

and   
So we will have 

In case of constant pressure:

Cv =
1
n

dEint

dT

Q = ΔEint = nCvΔT
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Molar specific heat of an ideal gas

Predictions based 
on the model for 
molar specific heat 
agree quite well with 
the behavior of 
monatomic gases, 
but not with the 
behavior of complex 
gases.
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The equipartition of energy
Our assumption: 

The internal energy of a gas, however, includes contributions 
from the translational, vibrational, and rotational motion of the 
molecules. Each degree of freedom contributes, on average, 

1

2
m0v2 =

3

2
kBT

1

2
kBT

Translational in 3 dimensions

N. Srimanobhas; Kinetic theory of gas 15
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The equipartition of energy (diatomic molecule)

N. Srimanobhas; Kinetic theory of gas 16
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The equipartition of energy
Monatomic Linear 

molecules
Non-linear 
molecules

Energy 
multiplication

Translation 3 3 3

Rotation 0 2 3

Vibration 0 3N-5 3N-6

1

2
kBT

1

2
kBT

1

2
kBT

Try H2O:

N. Srimanobhas; Kinetic theory of gas 17
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The equipartition of energy636 Chapter 21 The Kinetic Theory of Gases

This value is inconsistent with experimental data for molecules such as H2 and N2 
(see Table 21.2) and suggests a breakdown of our model based on classical physics.
 It might seem that our model is a failure for predicting molar specific heats for 
diatomic gases. We can claim some success for our model, however, if measure-
ments of molar specific heat are made over a wide temperature range rather than at 
the single temperature that gives us the values in Table 21.2. Figure 21.6 shows the 
molar specific heat of hydrogen as a function of temperature. The remarkable fea-
ture about the three plateaus in the graph’s curve is that they are at the values of the 
molar specific heat predicted by Equations 21.29, 21.33, and 21.34! For low tempera-
tures, the diatomic hydrogen gas behaves like a monatomic gas. As the temperature 
rises to room temperature, its molar specific heat rises to a value for a diatomic gas, 
consistent with the inclusion of rotation but not vibration. For high temperatures, 
the molar specific heat is consistent with a model including all types of motion.
 Before addressing the reason for this mysterious behavior, let’s make some brief 
remarks about polyatomic gases. For molecules with more than two atoms, three 
axes of rotation are available. The vibrations are more complex than for diatomic 
molecules. Therefore, the number of degrees of freedom is even larger. The result is 
an even higher predicted molar specific heat, which is in qualitative agreement with 
experiment. The molar specific heats for the polyatomic gases in Table 21.2 are higher 
than those for diatomic gases. The more degrees of freedom available to a molecule, 
the more “ways” there are to store energy, resulting in a higher molar specific heat.

A Hint of Energy Quantization
Our model for molar specific heats has been based so far on purely classical notions. 
It predicts a value of the specific heat for a diatomic gas that, according to Figure 
21.6, only agrees with experimental measurements made at high temperatures. To 
explain why this value is only true at high temperatures and why the plateaus in 
Figure 21.6 exist, we must go beyond classical physics and introduce some quantum 
physics into the model. In Chapter 18, we discussed quantization of frequency for 
vibrating strings and air columns; only certain frequencies of standing waves can 
exist. That is a natural result whenever waves are subject to boundary conditions.
 Quantum physics (Chapters 40 through 43) shows that atoms and molecules 
can be described by the waves under boundary conditions analysis model. Conse-
quently, these waves have quantized frequencies. Furthermore, in quantum physics, 
the energy of a system is proportional to the frequency of the wave representing the 
system. Hence, the energies of atoms and molecules are quantized.
 For a molecule, quantum physics tells us that the rotational and vibrational ener-
gies are quantized. Figure 21.7 shows an energy-level diagram for the rotational 
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Figure 21.6  The molar specific 
heat of hydrogen as a function of 
temperature.

For low temperatures, the diatomic hydrogen gas behaves like a 
monatomic gas. As the temperature rises to room temperature, its molar 
specific heat rises to a value for a diatomic gas, consistent with the 
inclusion of rotation but not vibration. For high temperatures, the molar 
specific heat is consistent with a model including all types of motion. 
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Distribution of molecular speeds

Back to what we discuss before:

vrms =

r
3kbT

m0
=

r
3RT

M
 21.2 Molar Specific Heat of an Ideal Gas 631

Table 21.1 Some Root-Mean-Square (rms) Speeds
 Molar Mass vrms  Molar Mass vrms
Gas (g/mol) at 208C (m/s) Gas (g/mol) at 208C (m/s)

H2 2.02 1902 NO 30.0 494
He 4.00 1352 O2 32.0 478
H2O 18.0 637 CO2 44.0 408
Ne 20.2 602 SO2 64.1 338
N2 or CO 28.0 511

Q uick Quiz 21.1  Two containers hold an ideal gas at the same temperature and 
pressure. Both containers hold the same type of gas, but container B has twice 
the volume of container A. (i) What is the average translational kinetic energy 
per molecule in container B? (a) twice that of container A (b) the same as that 
of container A (c) half that of container A (d) impossible to determine (ii) From 
the same choices, describe the internal energy of the gas in container B.

 

Example 21.1   A Tank of Helium

A tank used for filling helium balloons has a volume of 0.300 m3 and contains 2.00 mol of helium gas at 20.08C. 
Assume the helium behaves like an ideal gas.

(A)  What is the total translational kinetic energy of the gas molecules?

Conceptualize  Imagine a microscopic model of a gas in which you can watch the molecules move about the container 
more rapidly as the temperature increases. Because the gas is monatomic, the total translational kinetic energy of the 
molecules is the internal energy of the gas.

Categorize  We evaluate parameters with equations developed in the preceding discussion, so this example is a substi-
tution problem.

S O L U T I O N

Use Equation 21.21 with n 5 2.00 mol and T 5 293 K: E int 5 3
2 nRT 5 3

2 12.00 mol 2 18.31 J/mol # K 2 1293 K 2
5   7.30 3 103 J

(B)  What is the average kinetic energy per molecule?

What if the temperature is raised from 20.08C to 40.08C? Because 40.0 is twice as large as 20.0, is the total 
translational energy of the molecules of the gas twice as large at the higher temperature?

Answer  The expression for the total translational energy depends on the temperature, and the value for the tempera-
ture must be expressed in kelvins, not in degrees Celsius. Therefore, the ratio of 40.0 to 20.0 is not the appropriate 
ratio. Converting the Celsius temperatures to kelvins, 20.08C is 293 K and 40.08C is 313 K. Therefore, the total transla-
tional energy increases by a factor of only 313 K/293 K 5 1.07.

WHAT IF ?

Use Equation 21.19: 1
2m0v 2 5 3

2kBT 5 3
2 11.38 3 10223 J/K 2 1293 K 2

5   6.07 3 10221 J

S O L U T I O N

21.2 Molar Specific Heat of an Ideal Gas
Consider an ideal gas undergoing several processes such that the change in tem-
perature is DT 5 Tf 2 Ti for all processes. The temperature change can be achieved 

Pitfall Prevention 21.1
The Square Root of the Square?  
Taking the square root of v 2  does 
not “undo” the square because 
we have taken an average between 
squaring and taking the square 
root. Although the square root of 1v 22 is v 5 vavg because the squar-
ing is done after the averaging, 
the square root of v 2 is not vavg, 
but rather vrms.

1

2
m0v2 =

3

2
kBT
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Example
A 7.00-L vessel contains 3.50 moles of gas at a pressure of  
1.60 x 106 Pa. Find (a) the temperature of the gas and (b) the 
average kinetic energy of the gas molecules in the vessel. (c) 
What additional information would you need if you were asked 
to find the average speed of the gas molecules?
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Distribution of molecular speeds
Thus far, we have considered only average values of the 
energies of all the molecules in a gas and have not addressed 
the distribution of energies among individual molecules.
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Distribution of molecular speeds
The fundamental expression that describes the distribution of 
speeds of  gas molecules is N
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Maxwell–Boltzmann speed distribution 
function. If  is the total number of 
molecules, the number of molecules with 
speeds between  and  is 

.

N

v v + dv
dN = Nvdv
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Distribution of molecular speeds
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The speed distribution function 
for 105 nitrogen molecules at 
300 K and 900 K.
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Distribution of molecular speeds
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Example
Nine particles have speeds of 5.00, 8.00, 12.0, 12.0, 12.0, 14.0, 
14.0, 17.0, and 20.0 m/s. Find vavg, vrms, vmp
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