Particle-flow

Tracking

- Approximately two-thirds of the particles produced in collisions are charged so it is imperative that these particles are correctly reconstructed.
- The cms tracker's resolution outperforms the calorimeters for charged hadrons up to transverse momenta (pT) of $\mathrm{O}(300 \mathrm{GeV} / \mathrm{c})$.
- It also gives the direction of the charged particles emanating from the collision vertex
- Particle fllw uses an iterative tracking strategy that creates tracks using very strict quality criteria which are subsequently loosened to increase efffiency while maintaining a negligible fake rate.

Electrons and muons

- electrons radiate 50% of their energy in the tracker, so much effort is devoted to ensuring these electrons are accurately and precisely reconstructed
- Muons receive a specialized treatment combining information from the tracking and muon systems, giving rise to the jargon of 'global muons'

Clustering-Algorithm

Find all rechits greater than the seed threshold. Neighbouring rechits exceeding the threshold contest each other for seed status; the rechit with the greatest energy becomes the seed. In the ecal, crystals which share a corner qualify as 'neighbouring'; in the hcal the towers must share an edge. In other words, cells must be a local maximum above the seed threshold to qualify for seed status.

The seed and cell thresholds are based on hcal noise values derived from testbeam data

PF Clustering parameters

Reproduced from [41]. No clustering is applied in the HF. Components are: EB, EE - ECAL barrel \& endcap; HB, HE - HCAL barrel \& endcap; PS - preshower.

	EB	EE	HB	HE	PS
Cell threshold (GeV)	0.08	0.30	0.80	1.10	7×10^{-6}
Seed threshold (GeV)	0.23	0.80	0.80	0.80	5×10^{-4}
\# cells to compare to candidate seed	8	8	4	4	8
$R(\mathrm{~cm})$ (Eq. 4.1)	5.0	5.0	10.0	10.0	0.2
\# cells for position calculation	9	9	5	5	all

2. Grow clusters: connect the remaining rechits with energies greater than the cell threshold to the seeds, where the proposed rechit and any of the seed and already connected cells are neighbours (according to the definition above). Cells may belong to more than one cluster. Note, however, that in practice clusters do not grow larger than 2 or 3 cells across even in the most dense environments.

Determine the energy and position of the clusters with an iterative procedure.First, each cluster is assigned a position equal to that of its original seed. Second,each rechit contributes energy to each of its parent clusters with a weight, $\quad w_{i j} \exp \left(-d_{i j}^{2} / R^{2}\right)$ where di j is the distance between the cluster i and cell j, R is given by Table 4.I, and wi j is a normalization to prevent double-counting of energy. The position of each cluster is then re-computed as the average position of its rechits, weighted by a factor $\log (\mathrm{Ej} / E c e l l)$.
The energy of the cluster is then re-evaluated. This position/energy reassignment is repeated until the cluster's position does not move more than a small fraction of that subdetector's position resolution

Commissioning of the link algorithm-Track-

 cluster link- The track is first extrapolated from its last measured hit in the tracker to
- the two layers of the preshower detector
- the ECAL, at a depth corresponding to the expected maximum of a typical longitudinal electron shower profile
- the HCAL, at a depth corresponding to one interaction length, typical of a hadron shower
- The track is linked to a given cluster if the extrapolated position in the corresponding calorimeter is within the cluster boundaries.

Reconstruct muons, electrons etc.

Yes Are there tracks left?		
Are there clusters too? Yes No		Reconstruct photons and neutral hadrons with remaining clusters
Start reconstructing hadrons	Reconstruct muons, or, rarely, charged hadrons with no calorimeter energy	For each HCAL cluster
		Calibrate HCAL cluster and create a neutral hadron
		For each ECAL cluster
		Create a photon with cluster energy
		Done

Start reconstructing hadrons

Compare energies with track momentum

Compare energies with track momentum

$E<p$		Compatible?	
ECAL sate	tes?	Reconstruct a charged hadron	Neutral detection starts
While $\mathrm{E}<\mathrm{p}$			Assign excess ECAL energy to a photon
	Proceed anyway		
Add satellite			Assign excess HCAL energy to a neutral hadron
Recalibrate ECAL energy			

Are there any clusters remaining?
Proceed as for a block with no tracks
Done

