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1 Introduction

The analysis I worked on is Higgs to bb.The reconstruction of boosted Higgs
needs b-tagging. In this report I briefly explain the method which can be used
to enhance the b-tagging efficiency by using a MVA based analysis. This is
essential to have high efficiency of purity of b-tagged jets coming from boosted
Higgs boson. Another object needed is MET, missing transverse energy. Since
this physics process has high MET, it is important to study it in details. There
are a couple of source which can lead to fake MET. I will conclude the method
I used to separate signal and background, including ABCD method, fitting
method. In addition, I scanned over a dark matter model which is similar
to another one we focus. Because of the relation of MET and dark matter,
I am working in MET scanning group at the same time. Besides, I did the
optimization for soft drop mass and pruned jet mass of Higgs.

2 Dark Matter Simplified Model Hz′z′

2.1 Introduction

Many theories of physics beyond the Standard Model predict the existence of
stable, neutral, weakly-interacting and massive particle. Though we can only
observe it stable on the distance-scales of 10’s of meters, we refer to such matter
as dark matter. There is not any evidence for nongravitational interaction
between dark matter and Standard Model particles. If such interactions exist,
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dark matter matter particles could be produced at the LHC, Large Hadron
Collider.

Because of their weakly-interacting, they will not produce signal in the de-
tectors. We can observe the production when there are other detectable Stan-
dard Model particles produced in association with dark matter. The transverse
momentum always conserves. If all the particles are well reconstructed in the
detector, the vector sum of their transverse energy will be zero.If the vector sum
of transverse energy of all particles has large value pointing to either way, that
means there could be dark matter particles going out through the opposite way,
which will not produce signals in the detector. We call this transverse energy
opposite to the vector sum of transverse energy of all detected particles MET,
missing transverse energy. Besides,the production including dark matter and
Standard Model particles X(=q, g, Z, W, or h) is called “mono-X” or MET+X
reactions.

2.2 Simplified Model Hzpzp

There are some grounding assumption of simplified models. First, we assume
the interactions between dark matter and Standard Model particles exist. Sec-
ond, the dark matter itself is assumed to be a single particle, a Dirac fermion
WIMP, weak interacting massive particle, stable on collider time scales and
non-interacting with the detector.The choice of Dirac fermions permits some
precesses forbidden for Majorana fermions.Next,the interactions are explained
by assuming a mediating force or particle.For now, only one mediator and one
search channel are enough in the opening stage of an LHC discovery.Last,all
models are assumed to produce paris of dark matter particles.

Figure 1: Feynman diagrams leading to Higgs+MET events:(a)Hz′z′ model
(b)2HDM modle
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2.3 Parameter Scanning

Our focus is the simplified model 2HDM, which is figure 1(b).Since the simplified
model hzpzp, wihich is figure 1(a) is very same as the one we are interested.I am
assigned to simulate the model by Monte Carlo method and to see the variation
of cross section with different parameters and its kinetic distribution.The simu-
lation is done by MadGraph5. The parameters are gDM , the coupling strength
between mediator Z’ and two dark matter particles χ , gf , the coupling strength
between protons and Z’, gz, the coupling strength between two Z’s and Higgs,
mDM , mass of dark matter particle ,and mZ′ , mass of Z’.The constraints are:

1. gf ,gDM < 4π

2. gz <
√

4πmZ′sinθ

The cross section result is shown in Figure 2.

Figure 2: Cross section(pb) with different mass point.X axis is mass of mediator
Z’(GeV), and Y axis is mass of dark matter particle()GeV. Other parameters
are set at fixed values: gDM=1, gf=1/3, gz=mZ′

Next, I want to see whether kinetic distribution changes with parameters
changing. The most important kinetic distribution to us is the MET, which
can be seen from the transverse momentum of Lorentz vector sum of two dark
matter particles. I choose these parameters for benchmark: gDM=1, gf=1/3,
gz=100, mDM=50, mZ′=100.I just changed one parameter at a time. Table 1
is the coupling strength I tried, three coupling strength turned out to have no
effect on the kinetic distribution. Table 2 is the mass point I tried. It show that
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gDM gf gz
1.45 1.45 100
1 1 50
0.5 0.5 10
0.1 0.33 5
- 0.25 1
- 0.1 0.5
- - 0.1

Table 1: The coupling strength I tried.

when mass of dark matter larger that half of the mass of Z’,kinetic distribution
will change, while others will not.

Other kinetic distributions are ∆R of two sub-bjets of Higgs and transverse
momentum of Higgs.They are shown in figure 3 and 4.

mass of Z’(GeV) 10 20 50 100 200 300 500 1000 2000 5000
mass of dark matter(GeV)
1 x x x x x x o o o o
10 x x x x - - - - - o
50 x - x x x x - - - o
150 o - - - o o x o - o
500 o - - - - - o o o o
1000 o - - - - - - o o o

Table 2: The mass point I tried. Mark o means kinetic distribution, the trans-
verse momentum of Lorentz vector sum of two dark matter particles, changes.
Mark x means kinetic distribution, the transverse momentum of Lorentz vector
sum of two dark matter particles, does not change. Mark - means the mass
point has not been tried.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: ∆R of two sub-bjets of Higgs. (a)mDM=1GeV (b)mDM=10GeV
(c)mDM=50GeV (d)mDM=150GeV (e)mDM=500GeV (f)mDM=1000GeV .Legends are
mZ′(GeV)
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Transverse momentum of Higgs. (a)mDM=1GeV (b)mDM=10GeV
(c)mDM=50GeV (d)mDM=150GeV (e)mDM=500GeV (f)mDM=1000GeV .Legends are
mZ′(GeV)
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3 ABCD METHOD

3 ABCD method

3.1 Introduction

ABCD method can estimate background rate when events are discriminated by
two uncorrelated variables which both can separate signal and background.Then,We
make a 2-dimensional plot of the two variable, and separate it into four region
by drawing a line on each variable. They are called A, B, C ,D region, as figure
5. For now ,We can just consider axes two different variable .I will give them
meaning in next subsection. Because the result of statistic , the numbers of
events in A ,B ,C ,D region will have a relation: A/B=C/D.

There are four assumptions:

1. There is no signal leakage in A, B ,D region. (If signal distributes in C
region).

2. There is no correlation between x and y variables.

3. Background is only from one single source.

4. There should be enough events to propagate the statistic uncertainty.
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Figure 5: an example of ABCD method
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3.2 Application

Figure 6 are the two variables wich can separate the signal, Higgs to b,b, and the
background, QCD, Drell-Yen,W+Jet, and TT by using Monte Carlo simulation.
Two variables are ∆φ of two sub-jets in the AK8-jet and the sum of CSV1 of
two sub-jets in the AK8-jet. In figure 6(e), we can see that signal tends to be
at the upper right corner, while background is more likely to be at upper left
corner. Before separating into four region ,I make another selection that the
mass of Higgs, Lorentz vector sum of two jet, should be between 90(GeV) and
150(GeV), as figure 7.Finally,there are 4-bins histograms in figures 8 produced
by signal and different backgrounds. Because signal is almost in C region, we
want to use the numbers of events of backgrounds in A, B ,D region to get the
numbers of events of backgrounds in C region.The results are in table 3.

background A*D/B C
QCD 236.4 235
DY 202 150
W+Jet 6951.8 6953
TT 401321.3 383063

Table 3: The coupling strength I tried.

1Combined Secondary Vertex, a method used within CMS to tag b-jets, which uses the
secondary vertex information to train a MVA and result is used to tag jets.
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Figure 6: (a)∆φ of two sub-jets in the AK8-jet of signal. (b)The sum of CSV of two
sub-jets in the AK8-jet of signal. (c)∆φ of two sub-jets in the AK8-jet of QCD. (d)The
sum of CSV of two sub-jets in the AK8-jet of QCD. (e)The sum of CSV of two sub-jets
in the AK8-jet versus ∆φ of two sub-jets in the AK8-jet of signal. (f)The sum of CSV of
two sub-jets in the AK8-jet versus ∆φ of two sub-jets in the AK8-jet of QCD.All of them
pass the selection that both CSVs of sub-jet are larger than 0.423.
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Figure 7: (a)The sum of CSV of two sub-jets in the AK8-jet versus ∆φ of two sub-jets
in the AK8-jet of signal. (b)The sum of CSV of two sub-jets in the AK8-jet versus ∆φ
of two sub-jets in the AK8-jet of QCD.All of them pass the selection that both CSVs of
sub-jet are larger than 0.423. In addition, their Higgs mass should between 90Gev and
150GeV
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Figure 8: The sum of CSV of two sub-jets in the AK8-jet versus ∆φ of two sub-jets in the
AK8-jet. (a)signal (b)QCD (c)DY (d)TT (e)W+Jet.All of them pass the selection that
both CSVs of sub-jet are larger than 0.423. In addition, their Higgs mass should between
90Gev and 150GeV
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(a) (b)

Figure 9: Fitting the mass of Higgs. (a)Without region [90,150]. (b)Full region.

4 Fitting method

4.1 The purpose

Beside ABCD method, another way to propagate the number of event of back-
ground is fitting.If we can find a function that can well fit some variables of
signal merged background in simulation at a same time.We can use the function
to fit the data collected in the detector.The premise is that we believe the shape
of variables in simulation is same as true data.

4.2 pre-selection

1. CSV of jet > 0.423

2. Pt of leading jet >80Gev,Pt of sub-leading jet >30Gev

3. η <2.5

4. MET > 100GeV

4.3 Histogram Fit

In this subsection, I will use the fitting given by the class TH1F written by
ROOT6.The sample is TT simulation.The target is the mass of Higgs, the
Lorentz vector sum of two jets.

The results are in figure 9.

4.4 RooFit

RooFit is another class written in ROOT6.It should perform better than his-
togram fit.
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1. sample: background TT simulation, target: mass of Higgs, results: figure
10,11.

2. sample: background TT simulation, target: transverse mass2, results:
figure 12.

3. sample: signal Higgs to bb simulation, target: mass of Higgs, results:
figure 13, 14.

4. sample: signal Higgs to bb merged background TT simulation, target:
mass of Higgs, results: figure 15.

From the result of previous three points, the best fitted function for signal
and background are Gauss function convoluted with BreitWinger and Landau
function convoluted with Gauss function. Therefore, I tried to use the addition
of these two function to fit the sum of both histograms of mass of Higgs. The
conclusion is that the fitting result will change with different initial values, its
parameters do not convergent. The fitting method needs to be further studied.

2m2
1 + m2

2 + 2[ET (1)ET (2) − pT (1)pT (2)]
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Figure 10: Fitting the mass of Higgs by RooFit. Upper left and right are Landau
function with and without range 90GeV to 150GeV. Lower left and right are
Landau function convoluted with Gauss function with and without range 90GeV
to 150GeV.

x
0 100 200 300 400 500 600

E
ve

nt
s 

/ (
 4

 )

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

 0.030±ml =  0.000 

 0.14±sg =  26.66 

 0.15±sl =  47.93 

A RooPlot of "x"

x
0 100 200 300 400 500 600

E
ve

nt
s 

/ (
 4

 )

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

 0.094±ml =  0.000 

 0.21±sg =  27.42 

 0.18±sl =  51.74 

A RooPlot of "x"

x
0 100 200 300 400 500 600

E
ve

nt
s 

/ (
 4

 )

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

 0.13±ml =  0.00 

 0.20±sg =  26.94 

 0.21±sl =  53.72 

A RooPlot of "x"

x
0 100 200 300 400 500 600

E
ve

nt
s 

/ (
 4

 )

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

 0.082±ml =  0.000 

 0.21±sg =  26.59 

 0.27±sl =  55.40 

A RooPlot of "x"

Figure 11: Fitting the mass of Higgs of TT by RooFit. Upper left is Landau
function without range 90GeV to 150GeV. Upper right is Landau function with-
out range 0GeV to 40GeV and 90GeV to 150GeV. Lower left is Landau func-
tion convoluted with Gauss function without range 0GeV to 40GeV, 90GeV to
150GeV, and 500GeV to 600GeV. Lower right is Landau function convoluted
with Gauss function without range 0GeV to 40GeV, 90GeV to 150GeV, and
400GeV to 600GeV. 15
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Figure 12: Fitting the transverse mass of TT by RooFit. Upper left is Lan-
dau function. Upper right is Landau function convoluted with Guass function.
Lower left is Landau function convoluted with Guass function in range 150GeV
to 1400GeV. Lower right is Landau function convoluted with Guass function in
range 150GeV to 1200GeV .
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4.4 RooFit 4 FITTING METHOD

Figure 13: Fitting the mass of Higgs of signal by RooFit. Upper left is Guass
function convoluted with Landau function. Upper right is Landau function
convoluted with Guass function. Lower left is BreitWinger function . Lower
right is BreitWinger function convoluted with Guass function.

Figure 14: Fitting the mass of Higgs of signal by RooFit. Upper left is Crystal
ball function. Upper right is Voigtian function. Lower left is Voigtian function
convoluted with BreitWinger function . Lower right is BreitWinger function
convoluted with Guass function.
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Figure 15: (a)(b)(c)Fitting the mass of Higgs of addition of signal and background by
RooFit. The function is the addition of Gauss function convoluted with BreitWinger
and Landau function convoluted with Gauss function with different initial values. (d)a
zoom-in of (c)
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5 OPTIMIZATION

5 Optimization

5.1 Introduction

We want to find a cut on the mass of Higgs, Lorentz vector sum of two jets to
reduce the background and not to lose the signal too much. In addition,we want
to avoid choosing the cut within the mass of the other particles like Z(91GeV)
or W(80GeV), which are the channels other people are researching.

5.2 selection

1. Electron channel

2. 70GeV <Mass of Z(ll)<200GeV, pT of Z(ll)>200GeV

3. pT of AK8-jet>200GeV, |η| of AK8-jet< 2.4

4. 20GeV <soft drop mass/ pruned mass of AK8-jet<220GeV

5. ∆R of AK8-jet and any good electron >0.8. Good electron selection:

(a) |η| < 2.5

(b) 1.442 < |eleSCEta| <1.566 3

(c) pT >115GeV

(d) passHEEPIDNoIso=14

(e) eleMiniIso < 0.1

6. mass of Z’(Zh) >its mass point × 0.85

5.3 Samples

5.3.1 Signal

ZprimeToZhToZlephbbnarrowM − ∗13TeV −madgraph.

5.3.2 Background

1. Drell-Yen

(a) DY JetsToLL M − 50 HT − 100to200 TuneCUETP8M1 13TeV −
madgraphMLM − pythia8

(b) DY JetsToLL M − 50 HT − 200to400 TuneCUETP8M1 13TeV −
madgraphMLM − pythia8

(c) DY JetsToLL M − 50 HT − 400to600 TuneCUETP8M1 13TeV −
madgraphMLM − pythia8

3eleSCeta, eta of the super cluster which belong to a given electron.
4HEEP, High energy electron and photon identification used within CMS based on showe-

shape and isolation variables.
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5.4 Target, Significance, and Windows 5 OPTIMIZATION

(d) DY JetsToLL M − 50 HT − 600toInf TuneCUETP8M1 13TeV −
madgraphMLM − pythia8

2. BulkGravToZZToZlepZhadnarrowM − ∗13TeV −madgraph

Factor of Normalizing to luminosity: luminosity ( 5fb−1) × cross section /
number of events. The cross sections are list in table 4, 5.The cross sections
of bulk graviton is calculated by cross section (graviton) (pb) × branch ratio
(graviton to ZZ) × branch ratio (Z to ll), 0.03366, × branch ratio (Z to qq),
0.6991.

Drell-Yen Cross Section(pb)
HT-100to200 139.4
HT-200to400 42.75
HT-400to600 5.497
HT-600toInf 2.21

Table 4: The cross sections of Drell-Yen samples.

Mass point (Gev) Cross section (graviton) (pb) Branch ratio (graviton to ZZ)
600 4.6e-2 0.184219
800 1.1e-2 0.142802
1000 3.3e-3 0.125936
1200 1.2e-3 0.117445
1400 4.7e-4 0.112554
1600 2.5e-4 0.109472
1800 7.5e-5 0.101401
2000 4.5e-5 0.10594
2500 8.6e-6 0.103732
3000 1.9e-6 0.012549
3500 4.3e-7 0.101841
4000 9.4e-8 0.101384
4500 2.1e-8 0.100927

Table 5: The cross sections of Bulk Graviton samples.

5.4 Target, Significance, and Windows

5.4.1 Target

There are two kind of mass of Higgs(bb), soft drop mass and pruned jet mass
shown in figure 16.These are our targets.
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5.5 Soft Drop Mass 5 OPTIMIZATION

5.4.2 Significance

I used Punzi significance: P= efficiency of signal
1+
√
efficiency of background

, or P= efficiency of signal
1+
√
number of events of background

.

I used second definition when using Drell-Yen sample.Because the cross section
of bulk graviton is quite low, the number of events of bulk graviton is small
after normalized. Therefore, I used the efficiency of background instead when
using bulk graviton.

5.4.3 Windows

1. wide ones

(a) width: 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95,
100 GeV

(b) lower edges of windows: 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100,
105, 110 GeV ( upper edge = lower edge + width)

2. narrow ones: Table 6.

Width(GeV) Lower Edge (GeV)
60 90
55 90, 95
50 90, 95, 100
45 90, 95, 100, 105
40, 35, 30, 25, 20 90, 95, 100, 105, 110

Table 6: The narrow windows.

5.5 Soft Drop Mass

5.5.1 Most Significant Wide Windows and Windows 90 to 150 GeV

First, I compare the significance of wide windows given in section 5.4.3-1. How-
ever, the wide windows will cover the mass of other particles. I am recommended
to use narrow windows, which are all within the range 90 to 150 GeV. Then, I
compare the windows having the highest significance within the wide windows
and the windows 90 to 150 GeV.The background sample is Drell-Yen in this
subsection.

5.5.2 Narrow Window

I use another set of windows here, the section 5.4.3-2. Then, I made a table of
15 highest significance windows of Drell-Yen(figure 18) and bulk graviton(figure
19).
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5.6 Pruned Jet Mass 5 OPTIMIZATION

5.5.3 Summary

Because the difference among the 15 highest significances is little, I choose the
window whose signal efficiency is highest. It will be the 90-150 GeV.

Mass Point(GeV) Highest Significance Significance of Window
Window (GeV)(its significance) 90 -150 GeV

600 50-145(0.05) 0.036
800 105-145(0.09) 0.08
1000 105-140(0.12) 0.11
1200 105-135(0.15) 0.14
1400 100-135(0.18) 0.17
1600 100-135(0.22) 0.2
1800 100-135(0.25) 0.24
2000 95-135(0.29) 0.28
2500 90-135(0.4) 0.4
3000 80-135(0.49) 0.48
3500 75-145(0.57) 0.54
4000 80-155(0.65) 0.61
4500 80-155(0.76) 0.71

Table 7: The comparison of the windows having the highest significance of soft
drop mass within the wide windows and the windows 90 to 150 GeV.

5.6 Pruned Jet Mass

5.6.1 Most Significant Wide Windows and Windows 90 to 150 GeV

For same reason, I compared the significance of these two windows listed in
table 8.

5.6.2 Narrow Window

Same as previous method, there are windows having the 15 highest significance
in figure 18, 19.

5.6.3 Summary

Because the difference among the 15 highest significances is little, I choose the
window whose signal efficiency is highest. It will be the 90-150 GeV.
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5.6 Pruned Jet Mass 5 OPTIMIZATION

Mass Point(GeV) Highest Significance Significance of Window
Window (GeV)(its significance) 90 -150 GeV

600 50-140(0.046) 0.03
800 95-135(0.088) 0.084
1000 95-130(0.118) 0.108
1200 95-125(0.15) 0.13
1400 95-125(0.18) 0.16
1600 90-125(0.22) 0.19
1800 90-125(0.24) 0.22
2000 85-130(0.28) 0.26
2500 85-125(0.38) 0.36
3000 75-130(0.46) 0.43
3500 75-135(0.54) 0.49
4000 75-145(0.62) 0.54
4500 75-145(0.68) 0.6

Table 8: The comparison of the windows having the highest significance of
pruned jet mass within the wide windows and the windows 90 to 150 GeV.
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5.6 Pruned Jet Mass 5 OPTIMIZATION

(a) (b)

(c) (d)

(e) (f)

Figure 16: The pruned jet mass of Higgs of signal(blue), Drell-Yen(red), and Bulk-
Graviton(green) and the soft drop mass of Higgs of signal(pink) for different mass
points.(a)600GeV (b)800GeV (c)1200GeV (d)1800GeV (e)3000GeV (f)4500GeV
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(a) (b)

(c) (d)

Figure 17: The pruned jet mass of Higgs of signal for different mass points (GeV)(a)and
its zoom-in (b).The soft drop mass of Higgs of signal for different mass points (GeV)(c)and
its zoom-in (d).
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5.6 Pruned Jet Mass 5 OPTIMIZATION

Figure 18: 15 highest significance windows of soft drop mass using Drell-Yen

Figure 19: 15 highest significance windows of soft drop mass using bulk graviton

Figure 20: 15 highest significance windows of pruned jet mass using Drell-Yen

Figure 21: 15 highest significance windows of pruned jet mass using bulk gravi-
ton
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6 MISSING TRANSVERSE ENERGY SCANNING

6 Missing Transverse Energy Scanning

6.1 Introduction

The next main task is to find the dark matter particles. They can not be
detected and will not leave energy in calorimeter. However, there are many
other events can cause MET, missing transverse energy, like neutrino. That is
the reason why we want to see events which have large MET. That means there
will be large genuine MET, if such events are produced. Besides, fake MET
which is produced by noise made by detector and calorimeter need filtered.
Our scanning is to pick out the large MET events and to check whether it is a
interesting physical event or a noise.

6.2 Noise

1. Bean-Halo: muons produced by a proton hitting the beam pipe passing
CSC detector.

2. HCAL Noise: particles interacting with the light guides and photomulti-
plier tubes.

3. ECAL Noise: particles striking sensors.

4. ECAL Super Crystal: a crystal in ECAL having large MET

5. Cosmic: cosmic muons passing through detector.

6.3 Filter

1. HBHE noise filter: HCAL noise.

2. HCAL isolation filter: isolated noisy HCAL towers.

3. CSC beam halo filter: Bean-Halo noise.

4. ECAL dead cell filter: problematic dead cell in ECAL.

5. EE super crtstal filter: ECAL Super Crystal noise.

6.4 2015RunB

6.4.1 MET dataset

• Sample: /MET/Run2015B-PromptReco-v1/RECO

• CMSSW 7 4 6 patch5

• Skim : 4 T configuration from Robert.

• Three criteria to check interesting events.
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(a) (b)

(c) (d)

(e)

Figure 22: The Noise.(a) ECAL Super Crystal (b) Bean-Halo+HCAL (c) Bean-
Halo+ECAL (d) HCAL Noise (e) Cosmic 28



6.5 2015RunC Hotline 6 MISSING TRANSVERSE ENERGY SCANNING

1. PFMET > 300 GeV

2. PFMET/PFSumET > 0.6

3. CaloMET/CaloSumET > 0.7

• Selected events: one is cosmic noise, and another is HCAL noise.

• Problem of HBHE noise: very low HBHE filter efficiency shown in Table.

Filter Number of Events
no filtered 25468
CSC 24297
HBHE 4845
both 4478

Table 9: Number of events with different filters.

6.4.2 Golden Jason

We found the ECAL Super Crystal noise for first time. EE super crtstal filter
was changed from under scrutiny to be used.

6.5 2015RunC Hotline

Hotline is ready in one to two hours after collision.Most of events are CSC
beam-halo.

Filter Number of Events
No filter 1244
PV 1189
MET 952
CSC 244
HBHE 738
EEBadSc 797
ECAL dead cell 795
all 224

Table 10: The number of events passing different filters in hotline 2015RunC
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6.5 2015RunC Hotline 6 MISSING TRANSVERSE ENERGY SCANNING

(a) (b)

(c) (d)

Figure 23: The MET from MET dataset 2051RunB.(a) PFMET versus caloMET, no fil-
tered (b) PFMET versus PFclusterMET, no filtered (c) PFMET versus caloMET, passing
HBHE, CSC filters (d) PFMET versus PFclusterMET, passing HBHE, CSC filters
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6.5 2015RunC Hotline 6 MISSING TRANSVERSE ENERGY SCANNING

(a) (b)

Figure 24: The MET from MET dataset 2051RunB.(a) PFMET, no filtered, passing
HBHE filter, passing CSC filter, and passing all filters (b) PFSumET, the scalar sum of
transverse energy, no filtered, passing HBHE filter, passing CSC filter, and passing all
filters

(a) (b)

Figure 25: The MET from MET dataset 2051RunB.(a) caloMET/caloSumET, no filtered,
passing HBHE, CSC filters (b) PFMET/PFSumET, no filtered, passing HBHE, CSC
filters
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(a) (b)

(c) (d)

(e) (f)

Figure 26: The MET from golden jason 2051RunB.(a) PFMET ,passing CSC, HBHE,
HCAL isolation filters (b)-(f)Noise displays
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Figure 27: The MET from Hotline 2051RunC.(a) PFMET and caloMET, no filtered (b)
PFMET and caloMET, passing CSC, HBHE, HCAL isolation filters
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(a) (b)

(c) (d)

(e) (f)

Figure 28: The interseting events from Hotline 2051RunC.(a)(d)(e) di-jet (b)(c) multi-jet
(f) three-jet
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7 BDT

7 BDT

7.1 TMVA and BDT

TMVA, Toolkit for Multivariate Analysis has various application designed to the
needs of high-energy physics application. BDT, Boosted decision trees, is one of
its application. The process is that we input samples of signal and background
and parameters which can separate them. It will train with most of events
in these files and give out the weight of parameters, like a linear combination.
This linear combination will discriminate signal and background by giving a
value from -0.8 to 0.8. The value will be closer to +0.8 if events are signal-
like,and vice versa. After training, it will test with the remain event in the files
which will not tell if it is a singal or background. All of it does in the testing is
getting the variables of unknown event, using the weight, or linear combination,
it produced in training, and giving its “BDT” value. Then, we can tell whether
it is a good training by seeing if events having BDT closer to 0.8 are from signal.

7.2 BDT Training and Testing

• signal: ZprimeToZhToZlephbbnarrowM − ∗13TeV −madgraph.

• background:

1. DY JetsToLL M − 50 HT − 100to200 TuneCUETP8M1 13TeV −
madgraphMLM − pythia8

2. DY JetsToLL M − 50 HT − 200to400 TuneCUETP8M1 13TeV −
madgraphMLM − pythia8

3. DY JetsToLL M − 50 HT − 400to600 TuneCUETP8M1 13TeV −
madgraphMLM − pythia8

4. DY JetsToLL M − 50 HT − 600toInf TuneCUETP8M1 13TeV −
madgraphMLM − pythia8

• input variables:

1. pT of AK8-jet and sub-jet

2. CSV of AK8-jet and sub-jet

3. τ1, τ2, τ2/τ1

4. ∆R of two sub-jets
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7.3 BDT Reader 7 BDT

(a) (b)

(c) (d)

Figure 29: BDT reader results. Here I used the weight file from merged signal and DY.
(a)(c) BDT values (b)(d) background rejection versus signal efficiency.

7.3 BDT Reader

A BDT reader can read the weight file. With it, we can get BDT value directly
when reading files. I will compare these results with ones using CSV of AK8-jet
and sub-jets shown in figure 31, 32. Here I used the weight file from merged
signal and DY.
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7.3 BDT Reader 7 BDT

(a) (b)

(c) (d)

(e) (f)

Figure 30: CSV cut results. (a)(c) CSV of AK8-jet values (b)(d) background rejection
versus signal efficiency of CSV of AK8-jet. (e)(f) background rejection versus signal
efficiency of CSV of sub-jets.
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7.4 Separating into Two Category 7 BDT

7.4 Separating into Two Category

In previous section, it shows that efficiency of pT of AK8-jet of background is
increasing with pT of AK8-jet. However, it should be flat ideally. Therefore,
I separated the files into two category: pT of AK8-jet from 200 to 400, and
from 400 to infinity, trained them, and read weight files individually.The results
are shown in figure 31, 32. There is little difference from old ones. This might
because of the correlation of BDT and pT of AK8-jet shown in figure 33.
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7.4 Separating into Two Category 7 BDT

(a) (b)

(c) (d)

Figure 31: BDT reader results using two category. Here I used the weight file from merged
signal and DY. (a)(c) BDT values (b)(d) background rejection versus signal efficiency.

(a)

Figure 32: Efficiency of pT of AK8-jet versus pT of AK8-jet of background.
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7.4 Separating into Two Category 7 BDT

(a) (b)

(c) (d)

(e) (f)

Figure 33: The pT of AK8-jet versus BDT. (a) signal 600 GeV. (b) signal 1200 GeV. (c)
signal 1800 GeV. (d) signal 3000 GeV. (e) signal 4500 GeV. (f) DY background.
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7.5 Separating into various Category 7 BDT

7.5 Separating into various Category

After trying in two category,I tried with various category.I separate the files by
pT of AK8-jet(GeV):

1. 200-400

2. 400-600

3. 600-800

4. 800-1000

5. 1000-1200

6. 1200-infinity

Because the binning in pT of AK8-jet(GeV). I remove the pT of AK8-jet(GeV)
and sub-jets from input variables, shown in figure 34. Their correlation matrices
are in figure 35, 36. The result are in figure 36-43. We can see that the efficiency
of pT of AK8-jet(GeV) of background is mostly flat.
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Figure 34: Input variables in BDT training(signal:Z’ mass600-4500GeV, pT of
AK8-jet:1000-1200GeV).
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Figure 35: Correlation matrices of input variables. (a)(b)pT of AK8-jet:200-400GeV.
(c)(d)pT of AK8-jet:400-600GeV. (e)(f)pT of AK8-jet:600-800GeV. Signal:Z’ mass600-
4500GeV. Background:Drell-Yen.
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Figure 36: Correlation matrices of input variables. (a)(b)pT of AK8-jet:800-1000GeV.
(c)(d)pT of AK8-jet:1000-1200GeV. (e)(f)pT of AK8-jet:1200-inf.GeV. Signal:Z’ mass600-
4500GeV. Background:Drell-Yen.
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Figure 37: Training and testing result from pT of AK8-jet:1000-1200GeV. Signal:Z’
mass600-4500GeV. Background:Drell-Yen. (a)BDT value. (b)ROC curve.

(a) (b)

(c) (d)

Figure 38: BDT reader results using various category. Here I used the weight file from
merged signal and DY. (a)(c) BDT values (b)(d) background rejection versus signal effi-
ciency.
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(a) (b)

(c) (d)

Figure 39: BDT and CSV cut results with 800 GeV signal mass point by training with
various bins of pT of AK8-jet. (a) pT of AK8-jet. (b) ∆R of two sub-jets. (c) efficiency
of (a). (d) efficiency of (b).
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7.5 Separating into various Category 7 BDT

(a) (b)

(c) (d)

Figure 40: BDT and CSV cut results with 1000 GeV signal mass point by training with
various bins of pT of AK8-jet. (a) pT of AK8-jet. (b) ∆R of two sub-jets. (c) efficiency
of (a). (d) efficiency of (b).
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7.5 Separating into various Category 7 BDT

(a) (b)

(c) (d)

Figure 41: BDT and CSV cut results with 1600 GeV signal mass point by training with
various bins of pT of AK8-jet. (a) pT of AK8-jet. (b) ∆R of two sub-jets. (c) efficiency
of (a). (d) efficiency of (b).
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(a) (b)

(c) (d)

Figure 42: BDT and CSV cut results with 2000 GeV signal mass point by training with
various bins of pT of AK8-jet. (a) pT of AK8-jet. (b) ∆R of two sub-jets. (c) efficiency
of (a). (d) efficiency of (b).
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(a) (b)

(c) (d)

Figure 43: BDT and CSV cut results with 4500 GeV signal mass point by training with
various bins of pT of AK8-jet. (a) pT of AK8-jet. (b) ∆R of two sub-jets. (c) efficiency
of (a). (d) efficiency of (b).
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8 FUTURE PROGRESS

8 Future Progress

Among all the method to separate signal and background I tried, the BDT
seems to have the promising result so far. I will improve the BDT result and
try to solve the problem mentioned above. If it needs, we can also change input
variables to those of research of dark matter particle.
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