Electroweak Data Fits

Robert Clare University of California, Riverside

- Electroweak corrections: definitions and strategies
- Experimental inputs
- Effective couplings as a test of the Standard Model
- The Electroweak global fit
- Higgs mass limits
- Non-SM?
- Future Prospects in precision EW measurements
- Conclusions

Electroweak Radiative Corrections

The state of the second of the

Precision measurements: knowledge of Standard Model parameters through radiative corrections

$$\rho = \frac{m_{W}^{2}}{m_{Z}^{2}\cos^{2}\theta_{W}} = 1 \implies \bar{\rho} = 1 + \Delta\rho$$

$$\sin^{2}\theta_{W} = 1 - \frac{m_{W}^{2}}{m_{Z}^{2}} \implies \sin^{2}\theta_{eff} = (1 + \Delta\kappa)\sin^{2}\theta_{W}$$

$$m_{W}^{2} = \frac{\pi\alpha}{\sqrt{2}\sin^{2}\theta_{W}G_{F}} \implies m_{W}^{2} = \frac{\pi\alpha}{\sqrt{2}\sin^{2}\theta_{W}G_{F}} (1 + \Delta r)$$

$$\alpha(0) \implies \alpha(m_{Z}^{2}) = \frac{\alpha(0)}{1 - \Delta\alpha}$$
with : $\Delta\alpha = \Delta\alpha_{lept} + \Delta\alpha_{top} + \Delta\alpha_{had}^{(5)}$

$$\Delta\rho, \Delta\kappa, \Delta r = f(m_{t}^{2}, \log(m_{H}), ...)$$

$$H$$

$$(M_{W} = M_{W} =$$

The LEP Heritage

Robert Clare

Oct 7, 2003 4

Effective Z couplings

The second state of the second of the second

Experimental Strategies

- FB asymmetries $\Rightarrow \mathcal{A}_{e}\mathcal{A}_{f}$
- τ polarisation $\Rightarrow \mathcal{A}_e$ and \mathcal{A}_τ separately
- SLD (polarised beams) $\Rightarrow \mathcal{A}_{e}$ (and $\mathcal{A}_{\mu}, \mathcal{A}_{\tau}$)
- Asymmetries $\Rightarrow g_V/g_A$
- Z partial decay widths $\Rightarrow g_V^2 + g_A^2$

Standard Model tests: leptonic couplings

The second of th

Robert Clare UC Riverside

6

Effective couplings for quarks

All heavy flavor results from LEP and SLD are averaged in a combined fit, taking into account interdependencies (like mixing) and correlated errors (like QCD)

 $\chi^2 = 57.7/(105 - 14)$

 $A_{\text{FB}}^{0,\text{b}} = 0.0997 \pm 0.0016$ (tot sys 0.0007; common sys 0.0004) SM 0.1036

 $A_{\text{FB}}^{0,\text{c}} = 0.0706 \pm 0.0035$ (tot sys 0.0017; common sys 0.0009) SM 0.0740

Some results are still preliminary

Quark couplings

The second and the second of t

LEP + SLD, assuming lepton universality

Quarks vs Leptons

horizontal band: \mathcal{A}_{b} , $\mathcal{A}_{c}(SLD)$; vertical band: $\mathcal{A}_{\ell}(LEP+SLD)$; diagonal band : $A_{FB}^{0,b}$, $A_{FB}^{0,c}(LEP)$; $\leftarrow m_{H} \in [114, 1000]$

Standard model tests: $\sin^2 \theta_{eff}^{lept}$

Assuming lepton universality:

$$\chi^2/dof(lept.) = 1.6/2 (P = 44.0\%)$$

 $\chi^2/dof(hadr.) = 0.06/2 (P = 96.8\%)$
 $\chi^2/dof(tot.) = 10.5/5 (P = 6.2\%)$

hadrons vs leptons 3σ 2.9 σ between 2 most precise quantities (\mathcal{A}_{ℓ} and $A_{FB}^{0,b}$)

Top quark mass

New DØ Run I top mass

Use individual event probabilities instead of template

Improves statistical error by factor 2.5

 $m_{\rm t} = 180.1 \pm 3.6 \pm 4.0 \, {\rm GeV}$

New CDF Run II top mass

$$\begin{split} m_{\rm t} &= 177.5^{+12.7}_{-9.4} \pm 7.1(\ell + {\rm jets}) \\ m_{\rm t} &= 175.0^{+17.4}_{-16.9} \pm 7.9(\ell\ell) \end{split}$$

 $m_{\rm t} = 174.3 \pm 5.1 \,\,{\rm GeV}$

Robert Clare UC Riverside

WIN03

W mass from Tevatron

Run I results final

CDF/DO fit transverse mass (Jacobian)

W→µv MC 8 1800³ Z→µµ MC vents $W \rightarrow \tau \nu MC$ Systematics will come down with 1600 QCD increased statistics: Cosmic 1400 Energy scale controlled by Z events 1200 Hadronic recoil also constrained by Z 1000 events **UA2 (1992)** 80.36±0.37 800 CDF [Run-1] 80.433±0.079 600 **D**Ø [**Run-1**] 80.483±0.084 400 **Hadron Colliders** 80.454±0.059 200 80.0 81.0 $M_w[GeV]$ 0 20 60 80 100 40 120 n M_{T} , GeV/c² $m_{\rm W} = 80.454 \pm 0.059 \,\,{\rm GeV}$

2200

g 2000

DATA

Sum

Robert Clare UC Riverside

CDF Run II Preliminary, 72pb⁻¹

Entries

21599

W mass from LEP

All results still preliminary!

Since last year: new result from Aleph shifts the LEP average by -35 MeV (towards higher Higgs mass

Still possible to improve; currently 4 quark final states have a low weight due to systematic errors from color reconnection and Bose-Einstein correlations. Studies on-going.

Cross-check between qqqq and $qq\ell v: \Delta m_W = +22 \pm 43 \text{ MeV}$

$m_{\rm W} = 80.412 \pm 0.029(\text{stat}) \pm 0.031(\text{sys}) \text{ GeV}$

World average W mass and width

HAR THE AND TH

$m_{\rm W} = 80.426 \pm 0.034 \text{ GeV}; \ \Gamma_{\rm W} = 2.139 \pm 0.069 \text{ GeV}$

NuTeV results

Paschos-Wolfenstein: CC and NC rates for v_{μ} and \bar{v}_{μ} related to $\sin^2 \theta_{W}$

$$R^{-} = \frac{\sigma_{NC}^{v} - \sigma_{NC}^{\bar{v}}}{\sigma_{CC}^{v} - \sigma_{CC}^{\bar{v}}} = \rho^{2} \left(\frac{1}{2} - \sin^{2}\theta_{W}\right)$$

NuTeV actually measures R^{ν} and $R^{\bar{\nu}}$. Discrepancy from R^{ν} .

 $\sin^2 \theta_W = 0.22773 \pm 0.00135(\text{stat.}) \pm 0.00093(\text{sys.}); \Delta_{\text{SM}} 3.0$

Updated: atomic parity violation

Weak charge of the Cesium nucleus:

$$\begin{aligned} Q_{\rm W} &= -2 \left[C_{1\rm u} (2Z + N) + C_{1\rm d} (Z + 2N) \right] \text{ with } C_{1q} &= 2g_{Ae}g_{Vq}, \ e.g. \\ C_{1\rm u} &= \rho \left[-\frac{1}{2} + \frac{4}{3}\sin^2\theta_{\rm W} \right], \quad C_{1\rm d} &= \rho \left[\frac{1}{2} - \frac{2}{3}\sin^2\theta_{\rm W} \right] \end{aligned}$$

- Measure the amplitude of the parity-violating transition 6S-7S in Ce 133, possible due to the S-P mixing induced by neutral currents. Precise measurement performed by Wood, et al. (Science 275, 1759 (1997).
- **Q** Transition amplitude + Cesium atomic structure \Rightarrow Qw(Cs), predicted by the SM
- \bigcirc At one time, difference between experiment and SM 2σ
- "... an intriguing zigzag road of research ..." found many small corrections that cancel
- Updated estimate, included in global fit

Kuchiev & Flambaum, hep-ph/0305053

$$\begin{array}{ll} Q_W(Cs) &= -72.84 \pm 0.29(exp) \pm 0.36(th) \\ Q_W(Cs)^{SM} &= -72.90 \end{array}$$

Strategy of the global fit

The second state of the se

The global electroweak fit

- Based on predictions from ZFITTER and TOPAZO
- Fit up to 20 parameters
- Q Output estimates for: $m_{\rm t}$, $m_{\rm H}$, $\alpha_{\rm s}$ ($m_{\rm Z}^2$), $\Delta \alpha_{\rm had}^{(5)}$, $m_{\rm Z}$
- Fit repeated with and without NuTeV, to evaluate its contribution...

	Z pole	All but NuTeV	All data	
<i>m</i> _t (GeV)	171.5 ^{+11.9} -9.4	175.3 ^{+4.4} -4.3	174.3 ^{+4.5} -4.4	
<i>m</i> _H (GeV)	89 ⁺¹²² ₋₄₅	91 ⁺⁵⁵ -36	96 ⁺⁶⁰ ₋₃₈	
$\alpha_s(m_Z^2)$	0.1187 ± 0.0027	0.1185 ± 0.0027	0.1186 ± 0.0027	
m _W (GeV)	80.373 ± 0.033	80.394 ± 0.019	80.385 ± 0.019	
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}$	0.23147 ± 0.00016	0.23138 ± 0.00014	0.23143 ± 0.00014	
$\sin^2 \theta_W$	0.22313 ± 0.00064	0.22272 ± 0.00036	0.22289 ± 0.00036	
χ^2 /d.o.f.	14.7/10	16.7/14	25.4/15	
probab. (%)	14.3	27.5	4.5	

STR. CAR. MANES

The global electroweak fit

 $|O^{\text{meas}}-O^{\text{fit}}|/\sigma^{\text{meas}}$ Measurement Fit 0 2 3 $\Delta \alpha_{had}^{(5)}(m_7)$ 0.02761 ± 0.00036 0.02767 m_7 [GeV] 91.1875 ± 0.0021 91.1875 Γ_7 [GeV] 2.4952 ± 0.0023 2.4960 σ_{had}^0 [nb] 41.540 ± 0.037 41.478 R_I 20.767 ± 0.025 20.742 $A_{fb}^{0,I}$ 0.01714 ± 0.00095 0.01636 Largest contributions to χ^2 from $A_{I}(P_{\tau})$ 0.1465 ± 0.0032 0.1477 R_{b} 0.21638 ± 0.00066 0.21579 $A_{\rm FB}^{0,b}$ $\begin{array}{c} \textbf{R}_{c} \\ \textbf{A}_{fb}^{0,b} \end{array}$ 0.1720 ± 0.0030 0.1723 \mathcal{A}_{ℓ} (from SLD) 0.0997 ± 0.0016 0.1036 **NuTeV** A^{0,c}_{fb} 0.0706 ± 0.0035 0.0740 0.925 ± 0.020 0.935 A_b 0.670 ± 0.026 0.668 A_c A_I(SLD) 0.1513 ± 0.0021 0.1477 $sin^2 \theta_{eff}^{lept}(Q_{fb})$ 0.2324 ± 0.0012 0.2314 m_w [GeV] 80.426 ± 0.034 80.385 Γ_{w} [GeV] 2.139 ± 0.069 2.093 m, [GeV] $A^{0,b}_{FR}$ and \mathcal{A}_{ℓ} pull in opposite 174.3 ± 5.1 174.3 $\sin^2 \theta_w(vN)$ 0.2277 ± 0.0016 0.2229 directions (concerning effects on Q_w(Cs) -72.84 ± 0.46 -72.90 $m_{\rm H}$) 2 0 3

The global fit: m_W, m_t, m_H

The state of the s

Good consistency between direct and indirect (Z pole) m_W and m_t values.

Direct m_W, m_t prefer low Higgs mass (as does \mathcal{A}_ℓ)

The global fit: limits on the Higgs mass

Sand a long of the second of t

*m*_H < 219 GeV

Blue band is estimate of theoretical uncertainties coming from higher order effects

Possibly overestimated as two-loop contributions to m_W (Weiglein, et al.) might be partially canceled by similar contributions to Z partial widths and $\sin^2 \theta_{eff}^{lept}$

Higgs limits

The second second with the second of the sec

Beyond the SM – the MSSM

Sand a fair of the second of t

In the SM, the Higgs mass is a free parameter, and $m_{\rm t}$ and $m_{\rm W}$ can be related to it.

In the MSSM, the Higgs mass is no longer free. $m_{\rm H}$, $m_{\rm t}$, and $m_{\rm W}$ depend on the SUSY parameters.

Unfortunatly, **they** are free!

MSSM seems to be a bit more compatible with the data...

MSSM: Heinemeyer, Weiglein, hep-ph/0307177

Treading on thin ice ... must m_H be small?

States and the second of the s

	now	Run IIA	Run IIB	Run IIB*	LHC	LC	GigaZ
$\delta \sin^2 \theta_{\text{eff}}^{\text{lept}} (\times 10^5)$	17	78	29	20	14–20	(6)	1.3
δm_{W} [MeV]	33	27	16	12	15	10	7
$\delta m_{\rm t} [{\rm GeV}]$	5.1	2.7	1.4	1.3	1.0	0.2	0.13
$\delta m_{\rm H}$ [MeV]	—	—	<i>O</i> (2	000)	100	50	50

U.Baur, et al., Snowmass 2001, hep-ph/0111314

Near future (Run II, LHC):

- $\delta m_{\rm W} = 15 \, {\rm MeV}$
- $\delta m_{\rm t} = 1.5 \, {\rm GeV}$
- $\delta \Delta \alpha_{had} = 0.0002$

Far future (LC, GigaZ):

- $\delta m_W = 7 \text{ MeV}$
- $\delta m_{\rm t} = 130 \; {\rm MeV}$
- $\delta \Delta \alpha_{had} = 0.00007$
- $\delta \sin^2 \theta_{\text{eff}}^{\text{lept}} = 1.3 \times 10^{-5}$

The second state of the second of the second

States and the second of the s

States of the st

Sand a line was a long was a survey of the state of the second and the second and

- The Standard Model describes with unprecedented precision a huge amount of data
- Geric The largest discrepancies are due to the NuTeV result and to $A_{FB}^{0,b}$; interpreted as statistical fluctuations they are ≤ 3 σ
- Global fit:

*m*_W < 219 GeV

- Future inputs:
 - **Final results from LEP-II:** m_W, Γ_W
 - Solution New measurements of m_W , Γ_W , m_t as well as $\sin^2 \theta_{eff}^{lept}$ from Tevatron Run II and LHC
- Far future
 - Linear Collider and GigaZ?

What will we find?