

Electroweak Fits at LEP & SLD

Eric Lançon CEA-Saclay For the LEP Electroweak Working Group

Special thanks to M. Grünewald, P. Janot, B. Pietrzyk and G. Quast

Electroweak Fits Used for

- Testing the SM at the level of its quantum corrections
- Searching for deviation(s) that may signal presence of new physics
- Predicting the top mass and constraining the Higgs mass
 - Simple example :

Eric Lançon

$$M_{\mathsf{W}}^2 \left(1 - \frac{M_{\mathsf{W}}^2}{M_{\mathsf{Z}}^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_{\mu}} \left(1 + \Delta r \right),$$

 $\Delta r = \Delta \alpha - \Delta (M_{top}^{2}/M_{Z}^{2}) + \Delta (Ln(M_{H}/M_{Z}))$ ~6% ~ 3% <1% for MH < 400 GeV

High precision required The Legacy of LEP & SLC - Siena October 2001

LEP1

- Keyword : precision measurements (a lot!)
- $\Delta x/x$ with a lot of 0 (not in \$)
- Prediction of M_{top} Value
 Error
 Relative translated

 Mw (GeV)
 80.356
 0.125
 1.6E-03 into sin² θ_{W} Mz (GeV)
 91.187
 0.002
 2.2E-05
 1.2E-02 **a**, G_m , M_Z As input parameters

After M_{top}...

- Once M_{top} measured,
 - M_w can also be predicted
 - M_H can be constrained?
 - Strongest constrains on $M_{\rm H}$:
 - Asymmetries
 - M_W
- LEP2
 - On the road towards M_H

The Legacy of LEP & SLC - Siena October 2001

From 1995 to 2001

0.02

The 3.3 σ discrepancy

b asymmetries

b quark vs leptons couplings

The Legacy of LEP & SLC - Siena October 2001

A_{LR} & A_{FB} vs time

Difference did not increased with precision of measurements

Internal Consistency : OK

Precision of direct measurements of M_w (34 MeV) now similar to EW fits (23 MeV)

Direct measurements

Accuracy of Calculations

- Sensitivity small ~In(M_H/M_Z)
 - Need for precise calculations
- Accuracy :
 - Parametric errors (our job)
 - Uncertainties due to truncations of series (our theoretical colleagues)
- Calculations should match accuracy of high precision data
 - Implemented in ZFITTER & TOPAZO
 - Run and compare...

The Legacy of LEP & SLC - Siena October 2001

Higgs Mass as of Today

Eric Lançon

- ALL LEP2 data
 - $\Delta M_w = 25 \text{ MeV} ? (34 \text{ now})$
 - Central value may change, LEP energy not final !
 - $\Delta M_{\rm H} \approx 35-50 \text{ GeV}$
- FERMILAB run II
 - $\Delta M_{top} = 2 \text{ GeV} ? (5 \text{ now})$
 - $\Delta M_{\rm H} \approx 30-40 \ {\rm GeV}$

Both

• $\Delta M_{\rm H} \approx 20 \ {\rm GeV}$

Minimum changes due to changes of relative weights of \neq measurements

The Shadow of the Higgs

Ten Years of GREAT Physics

- Internal consistency of the standard model tested with great precision, 3 to 5 times better than anticipated;
- The mass of the top quark was predicted several years before it has been discovered
- The measurements led to the prediction of a relatively light Higgs boson (around 100 GeV/c2), with the same precision (50%) as on top quark mass before LEP, it should be round the corner...
- Impressive cooperation of machine and experimental physics and theoreticians.

THEORY OF PRECISION ELECTROWEAK EXPERIMENTS

G. Altarelli

CERN --- Geneva

Rapporteur talk at the XIV International Symposium on Lepton and Photon Interactions Stanford, August 7-12, 1989

"Indeed LEP2 is a formidable discovery machine and I am confident that the low-lying fringes of the rich spectroscopy associated with all conceivable scenarios for new physics will already be observed at LEP2"

