Precision electroweak measurements: a theorist point of view

ICHEP, Amsterdam, June 7, 2002

Paolo Gambino CERN-TH

The global SM fit

 $M_{\scriptscriptstyle H}^{fit} = 81 \; {\rm GeV}$ $M_{\rm H} < 193~{\rm GeV}$ at 95% CL χ^2 /d.o.f.=29.7/15 probability=1.3%.

Two $\sim 3\sigma$ anomalies

Without NuTeV: $M_{H}^{fit} = 78 \text{ GeV}$ $M_{\rm H} \lesssim 190~{\rm GeV}$ at 95% CL χ^2 /d.o.f.=20.5/14 probability=11.4%.

 M_H fit independent of NuTeV

Measurement Pull -3 -2 -1 0 <u>1</u> $\Delta \alpha_{had}^{(5)}$ (m m₇ [Ge Γ_z [Ge^v σ_{had}^0 [n] R_I $A_{fb}^{0,I}$ $A_{I}(P_{\tau})$ R_b

$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02761 ± 0.00036	-0.24	•
m _z [GeV]	91.1875 ± 0.0021	0.00	
Γ _z [GeV]	2.4952 ± 0.0023	-0.41	-
$\sigma_{\sf had}^0$ [nb]	41.540 ± 0.037	1.63	
R _I	20.767 ± 0.025	1.04	-
A ^{0,I} _{fb}	0.01714 ± 0.00095	0.68	-
A _I (P _τ)	0.1465 ± 0.0032	-0.55	-
R _b	0.21644 ± 0.00065	1.01	-
R _c	0.1718 ± 0.0031	-0.15	
A ^{0,b} _{fb}	0.0995 ± 0.0017	-2.62	
A ^{0,c} _{fb}	0.0713 ± 0.0036	-0.84	-
A _b	0.922 ± 0.020	-0.64	-
A _c	0.670 ± 0.026	0.06	
A _l (SLD)	0.1513 ± 0.0021	1.46	
$\sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.87	-
m _w [GeV]	80.449 ± 0.034	1.62	
Г _W [GeV]	2.136 ± 0.069	0.62	-
m _t [GeV]	174.3 ± 5.1	0.00	
sin ² θ _W (νN)	0.2277 ± 0.0016	3.00	
Q _W (Cs)	-72.18 ± 0.46	1.52	
			-3-2-10123

Summer 2002

(O^{meas}–O^{fit})/o^{meas}

2 3

THE NUTEV ELECTROWEAK RESULT

NuTeV measures ratios of NC/CC cross sections in νN DIS. Ideally

$$R_{\nu} \equiv \frac{\sigma(\nu \mathcal{N} \to \nu X)}{\sigma(\nu \mathcal{N} \to \mu X)} = g_L^2 + r g_R^2$$

$$R_{\bar{\nu}} \equiv \frac{\sigma(\bar{\nu} \mathcal{N} \to \bar{\nu} X)}{\sigma(\bar{\nu} \mathcal{N} \to \bar{\mu} X)} = g_L^2 + \frac{1}{r} g_R^2,$$

$$r \equiv \frac{\sigma(\bar{\nu} \mathcal{N} \to \bar{\mu} X)}{\sigma(\nu \mathcal{N} \to \mu X)}$$

 $R_{\nu,\bar{\nu}}^{exp}$ differ from above because of ν_e contamination, cuts, NC/CC misID, 2nd gen quarks, non isoscalar target, QCD-EW corrections... MonteCarlo relates $R_{\nu,\bar{\nu}}^{exp}$ to $R_{\nu,\bar{\nu}}$.

Most uncertainties and $O(\alpha_s)$ effects drop from <u>Paschos-Wolfenstein relation</u>

$$R_{\rm PW} \equiv \frac{R_{\nu} - \mathbf{r}R_{\bar{\nu}}}{1 - \mathbf{r}} = \frac{\sigma(\nu \mathcal{N} \to \nu X) - \sigma(\bar{\nu}\mathcal{N} \to \bar{\nu}X)}{\sigma(\nu \mathcal{N} \to \ell X) - \sigma(\bar{\nu}\mathcal{N} \to \bar{\ell}X)} = g_L^2 - g_R^2 = \frac{1}{2} - \sin^2\theta_{\rm W},$$

Since $\frac{\partial R_{\nu}}{\partial s_{W}^{2}} \gg \frac{\partial R_{\bar{\nu}}}{\partial s_{W}^{2}}$, NuTeV fit $R_{\nu,\bar{\nu}}^{exp}$ for $\sin^{2}\theta_{W}$, m_{c} or $g_{L,R}^{2}$ at LO in QCD NuTeV relies heavily on MC. In first approx corresponds to a measurement of R_{PW}

NuTeV result is expressed as a test on the on-shell $s_W^2 \equiv 1 - M_W^2/M_Z^2$:

 $s_W^2 (\text{NuTeV}) = 0.2276 \pm 0.0013 \text{ (stat)} \pm 0.0006 \text{ (syst)} \pm 0.0006 \text{ (th)}$ $-0.00003 \left(\frac{M_t}{\text{GeV}} - 175 \right) + 0.00032 \ln \frac{m_h}{100 \text{ GeV}}.$

Global fit $s_W^2 = 0.2226 \pm 0.0004 \Rightarrow 3\sigma!$

QED-EW treatment not perfect, but expect only small effects

* Can PDFs uncertainties be responsible for the discrepancy? Unlikely if you use STANDARD sets of PDFs (see later), thanks to the cancellations in R_{PW} .

* Are Next-to-Leading QCD corrections necessary?

Not in R_{PW} , but any CC/NC or $\nu/\bar{\nu}$ asymmetry (cuts, spectra, sensitivity) spoils delicate cancellations. NuTeV seems to differ enough from R_{PW} . A consistent NLO analysis would simplify several other issues

 \gg NuTeV ANALYSIS NEEDS TO BE UPGRADED TO NLO $\ll\ll$

The strange sea asymmetry

 $s(x) \neq \overline{s}(x)$ leads to a violation of the PW relation (Davidson *et al.* hep-ph/0112302):

$$R_{PW} = \frac{1}{2} - s_W^2 + 1.3 \left(\Delta u - \Delta d - \Delta s \right)$$

where Δq is the asymmetry in the momentum carried, $\int_0^1 x \left[q(x) - \bar{q}(x)\right] dx$

- $s \neq \bar{s}$ of the sign needed to explain NuTeV can be induced non-perturbatively (*intrinsic strange*) Brodsky et al., Signal, Thomas
- s(x) mainly constrained by νN DIS. MRST, CTEQ use $s = \bar{s} = \frac{\bar{u} + \bar{d}}{4}$
- Barone et al. (BPZ, 1999) reanalysed at NLO all νN DIS together with ℓN and Drell-Yan data. \Rightarrow Higher sensitivity to strange sea than standard fits
- BPZ s(x) is larger than usual at high-x, mostly due to CDHSW data. This is in contrast to NuTeV dimuon results, not included in BPZ, but agrees well with positivity constraints. BPZ best fit $\Delta s \approx 0.002$ with $\Delta \chi^2 = -25$ (two dof more) can explain a fraction of discrepancy and agrees with theory estimates

The strange sea asymmetry (II)

NuTeV fits from dimuons $\Delta s = -0.0027 \pm 0.0013$ (hep-ex/0102049,hep-ex/0203004) which would increase the anomaly. This estimate has various problems parametrization, LO fit depending on underlying PDF and not global, theory error much larger than statistical: fitting dimuons events is not enough

Bottom line: We know very little on the strange sea. $\gg \Rightarrow$ A GLOBAL NLO FIT INCLUDING ALL DATA IS NEEDED $\ll \ll$ Before that effect of Δs on s_W^2 is UNCLEAR

Isospin violation - Nuclear effects

Isospin violating PDFs also violate the PW relation $R_{PW} = \frac{1}{2} - s_W^2 + 1.3(\Delta u - \Delta d)$

$$u_p(x) \neq d_n(x), \qquad \qquad \frac{u_p - d_n}{u_p + d_n} \approx \frac{m_u - m_d}{\Lambda_{QCD}} \approx 1\%$$

Such small violation of charge symmetry would NOT give visible effects elsewhere and could explain a fraction of the anomaly

A bag model estimate (Sather) implies $\delta s_W^2 = -0.002$, others (Rodionov et al, Signal Cao) predict 10 times smaller effects, but with subtle cancellations NUCLEAR EFFECTS look very UNLIKELY to explain NuTeV

- Nuclear Shadowing different in NC/CC (Miller & Thomas, hep-ex/0204007)
 VMD model, wrong sign
- More detailed analysis (Kovalenko *et al.* hep-ph/0207158) nuclear rescaling model that explains EMC data but NuTeV fits self-consistently its PDFs

New Physics vs NuTeV

NuTeV requires a $\sim 1\%$ (tree level) effect. Very difficult to build realistic models that satisfy all exp constraints. See Davidson *et al.*, hep-ph/0112302 for overview

- * NO Supersymmetry, with or without R parity
- ***** NO Models inducing only oblique corrections
- * NO (in general) anomalous Z coupling including models with ν_R mixing like Babu-Pati, hep-ph/0203029
- * YES Contact interactions $(-0.024 \pm 0.009) 2\sqrt{2}G_F [\bar{L_2}\gamma_{\mu}L_2][\bar{Q_1}\gamma_{\mu}Q_1]$
- * Maybe... Leptoquarks but only with split SU(2) triplet
- * YES unmixed Z' light or heavy, for ex. narrow superweak abelian $B 3L_{\mu} Z'$, $2 \leq M_{Z'} \leq 10$ GeV, Davidson *et al.*, less successful $L_{\mu} - L_{\tau}$, Ma & Roy hep-ph/0111385

The global SM fit

 $M_{H}^{fit} = 81 \text{ GeV}$ $M_{H} < 193 \text{ GeV}$ at 95% CL $\chi^{2}/\text{d.o.f.}=29.7/15$ probability=1.3%.

Two $\sim 3\sigma$ anomalies

Without NuTeV: $M_H^{fit} = 78 \text{ GeV}$ $M_H \lesssim 190 \text{ GeV}$ at 95% CL $\chi^2/\text{d.o.f.}=20.5/14$ probability=11.4%.

$\begin{array}{c|cccc} Summer \ 2002 \\ \hline Measurement & Pull & (O^{meas}-O^{fit})/\sigma^{meas} \\ \hline -3 \ -2 \ -1 \ 0 \ 1 \ 2 \ 3 \\ \hline \Delta \alpha_{had}^{(5)}(m_z) & 0.02761 \pm 0.00036 & -0.24 \\ \hline m_z \ [GeV] & 91.1875 \pm 0.0021 & 0.00 \\ \hline \Gamma_z \ [GeV] & 2.4952 \pm 0.0023 & -0.41 \\ \hline \sigma_{had}^0 \ [nb] & 41.540 \pm 0.037 & 1.63 \\ \hline R_1 & 20.767 \pm 0.025 & 1.04 \\ \hline A_{fb}^{0,1} & 0.01714 \pm 0.00095 & 0.68 \\ \hline \end{array}$

Z			
Г _Z [GeV]	2.4952 ± 0.0023	-0.41	-
$\sigma_{\sf had}^0$ [nb]	41.540 ± 0.037	1.63	
R _I	20.767 ± 0.025	1.04	
A ^{0,I} _{fb}	0.01714 ± 0.00095	0.68	-
A _l (P _τ)	0.1465 ± 0.0032	-0.55	-
R _b	0.21644 ± 0.00065	1.01	
R _c	0.1718 ± 0.0031	-0.15	•
A ^{0,b} _{fb}	0.0995 ± 0.0017	-2.62	
A ^{0,c} _{fb}	0.0713 ± 0.0036	-0.84	
A _b	0.922 ± 0.020	-0.64	-
A _c	0.670 ± 0.026	0.06	
A _l (SLD)	0.1513 ± 0.0021	1.46	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.87	-
m _w [GeV]	80.449 ± 0.034	1.62	
Г _w [GeV]	2.136 ± 0.069	0.62	-
m _t [GeV]	174.3 ± 5.1	0.00	
sin ² θ _W (νN)	0.2277 ± 0.0016	3.00	
Q _W (Cs)	-72.18 ± 0.46	1.52	

-3 -2 -1 0 1 2 3

Summer 2002

Another unwelcome anomaly

Root of the problem is the 3σ discrepancy between the L-R asymmetries of SLD (very light Higgs, like M_W) and the FB b asymmetries of LEP (heavy Higgs)

In the SM leptonic and hadronic asymmetries measure the SAME quantity, $\sin^2\theta_{eff}^{lept}$

leptonic asymmetries are mutually consistent and M_W pushes for a light Higgs too. Hadronic ones dominated by b: NEW PHYSICS in the b couplings?

QCD systematics in A^b_{FB} are well studied

New Physics in the *b* couplings?

$\star A_{LR}^{FB}$ of SLD agree with SM

* fixing lept coupling, A_{FB}^b implies 30% correction to b vertex \Rightarrow needs tree level physics

 $\star R_b$ agrees with SM, $|\delta g_R^b| \gg |\delta g_L^b|$

EXOTIC SCENARIOS that shift b_R coupling:

- Mirror Vector-like fermions mixing with
 b quark Choudhury et al. hep-ph/0109097
- L-R models that single out the third generation He, Valencia hep-ph/0203036

Too light a Higgs

First option: dilute all asymmetries according to PDG, only χ^2 changes Ferroglia et~al. hep-ph/0203224, DeBoer & Sander

Diluting the hadronic asymmetries, a consistent picture emerges

 $M_{\rm \scriptscriptstyle H}^{fit} = 40 \,\, {\rm GeV} \,\, {\rm prob} = 75\%, \, \left| \, M_{\rm \scriptscriptstyle H}^{95\%} < 109 \,\, {\rm GeV} \, \right| \, {\rm but} \,\, {\rm LEP:} \,\, M_{\rm \scriptscriptstyle H} > 114 \,\, {\rm GeV}$

Why hasn't the Higgs been found?

Chanowitz hep-ph/0207123; Altarelli et al. hep-ph/0106029

NB: small sensitivity to $\alpha(M_Z)$: most unfavorable $M_H^{95\%} \sim 120$ GeV. Theoretical error cannot shift up $M_H^{95\%}$ more than 20 GeV Freitas *et al.* hep-ph/0202131, PG The paradox dissolves if $M_t \gtrsim 180$ GeV

Combined probability of global fit and of $M_H > 114$ GeV is the same with/without $A_{FB}^b \sim 0.003/0.025$ (with/without NuTeV) Chanowitz, hep-ph/0207123

New physics simulating a light Higgs

Excluding A_{FB}^b and NuTeV from global fit the quality of the fit improves considerably, but M_H^{fit} becomes very small

Finding New Physics that simulates a very light Higgs is much easier than fixing the two anomalies!

- oblique corrections: in general requires S < 0(T > 0) or $\epsilon_{2,3} < 0$
- A non-degenerate unmixed 4th generation with $m_N \approx 50~{\rm GeV}$ Novikov et al. hep-ph/0205321, 0111028
- More interestingly, the MSSM offers:
 - rapid decoupling (strongly constrained by direct searches)
 - $-M_W$ always higher than in SM, $\sin^2 \theta_{eff}^{lept}$ lower than in SM

A plausible MSSM scenario involves light $\tilde{\nu}, \tilde{\ell}$ and possibly charginos, heavy squarks, at $\tan \beta \gtrsim 5$, and is testable at Tevatron Altarelli *et al.* hep-ph/0106029 Other susy scenario: EMSSM, Babu & Pati, hep-ph/0203029

CONCLUSIONS

- NuTeV aims at precision measurements in a complex hadronic environment. Theoretical systematics not fully under control or untested include a small strange/antistrange asymmetry and isospin violation. The analysis should be upgraded to NLO.
- Even without NuTeV, the SM fit to M_H is not good. What we know on M_H depends *crucially* on the measurement of the *b* FB asymmetries, which represents another (even more) puzzling anomaly.
- Both anomalies require new tree level effects. No susy. Proposed new physics explanations for both NuTeV and A_{FB}^b , when viable, are ad-hoc and exotic.
- removing the anomalies from the SM fit leads to inconsistency with the direct lower bound on M_H . Some solution of this problem will be tested at Tevatron
- A clear-cut, compelling case for New Physics has yet to be made but SM is definitely under strain

