Precision tests of the Electroweak Standard Model at LEP

Alessandra Tonazzo University of Milano-Bicocca

on behalf of the LEP collaborations ALEPH, DELPHI, L3, OPAL and the LEPEWWG

The LEP data sample

LEP1 : 1989-95 √s ~ Mz 200 pb⁻¹/exp 15.5 X 10⁶ Z -> qq 1.7 X 10⁶ Z -> II LEP2 : 1995-2000 √s = 161 ... 209 GeV 700 pb⁻¹/exp 50K WW

SM measurements at LEP

Standard Model Measurements:

- Z lineshape and asymmetries
- Heavy flavours
- LEP2 fermion pair cross-sections and asymmetries
- LEP2 boson production cross-sections
- W boson mass and width

Set of "pseudo-observables", chosen with minimal experimental correlation, to describe the hadronic and leptonic cross-sections around the Z peak

Heavy flavours

Measurements vs SM predictions (1)

Effective weak mixing angle

LEP2 fermion pair production

LEP2 fermion pair differential cross-sections

LEP2 fermion pair asymmetries and heavy flavours

S-matrix fits: a model independent approach to describe cross-sections and asymmetries in e+e- annihilations

Constraints on new physics: Z`bosons

LEP2 difermion data interpretation (2)

LEP2 photon pair cross section

e+e- -> ggg is a clean test of QED

LEP2 W pair cross sections

e+e- -> W+W-

Theory at tree-level, i.e. existence of Triple Gauge-boson Couplings, was proven since the first LEP2 data.

Now theory is tested <u>at loop level</u> ! Experimental precision is close to theoretical prediction accuracy (0.5%)

TGCs are measured directly from angular distributions in WW events

(see talk by A.Straessner for all details)

LEP2 ZZ and single-boson cross sections

Precision limited by statistics

LEP2: W boson mass and width

> Aim for 30-35 MeV final precision, with ongoing efforts on common systematics (Colour Reconnections, LEP beam energy)

We also measure the W width: $G_W = 2.150 \pm 0.091 \text{ GeV}$

Global electroweak fit

- Gw direct meas. for the first time
- •A^{0,b}_{FB} A^{0,c}_{FB} from LEP

• sin²q_W from NuTev final result (see talk by K.McFarland) hep-ph/0111059, Phys.Rev.Lett. 88 (2002)

• Qw(Cs) from APV hep-ph/0111019

-3-2-10123

c²/NDF=28.8/15 Prob.=1.7%

W and top mass: measurement vs predictions

Compare direct measurements of $\rm m_W$ (and $\rm m_{top})$ with values predicted from fit to the rest of EW data

Sensitivity to Higgs boson mass

Global fit of EW data to Higgs boson mass

LEP has provided an unprecedented set of high precision data and tested the Standard Model at loop level

LEP-1 results are (almost) final LEP-2 results are all available (preliminary)

Still a lot of activity going on !

- improve some of the measurements $(m_{W}...)$
- finalize results
- understand remaining puzzles

The Higgs has not been seen, but LEP is the place where most of the information about it has been found !