

Latest results from NA57

Giuseppe Eugenio Bruno*

University and INFN Bari, Italy E-mail: giuseppe.bruno@ba.infn.it

for the NA57 collaboration: F Antinori^k, P Bacon^e, A Badalà^f, R Barbera^f, A Belogianni^a, I J Bloodworth^e, M Bombara^h, G E Bruno^b S A Bull^e, R Caliandro^b, M Campbell^g, W Carena^g, N Carrer^g, R F Clarke^e, A Dainese^k, D Di Bari^b, S Di Libertoⁿ, R Divià^g, D Elia^b, D Evans^e, G A Feofilov^{*p*}, R A Fini^{*b*}, P Ganoti^{*a*}, B Ghidini^{*b*}, G Grella^{*o*}, H Helstrup^{*d*}, K F Hetland^{*d*}, A K Holme^{*j*}, A Jacholkowski^f, G T Jones^e, P Jovanovic^e, A Jusko^e, R Kamermans^r, J B Kinson^e, K Knudson^g, V Kondratiev^p, I Králik^h, A Kravčákováⁱ, P Kuijer^r, V Lenti^b, R Lietava^e, G Løvhøiden^j, V Manzari^b, M A Mazzoniⁿ, F Meddiⁿ, A Michalon^q, M Morando^k, P I Norman^e, A Palmeri^f, G S Pappalardo^f, B Pastirčák^h, R J Platt^e, E Quercigh^k, F Riggi^f, D Röhrich^c, G Romano^o, K Šafařík^g, L Šándor^h, E Schillings^r, G Segato^k, M Sené^l, R Sené^l, W Snoeys^g, F Soramel^k M Spyropoulou-Stassinaki^a, P Staroba^m, R Turrisi^k, T S Tveter^j, J Urbánⁱ, P van de Ven^r, P Vande Vyvre^g, A Vascotto^g, T Vik^j, O Villalobos Baillie^e, L Vinogradov^p, T Virgili^o, M F Votruba^e, J Vrlákováⁱ and P Závada^m ^a Physics Department, University of Athens, Athens, Greece ^b Dipartimento IA di Fisica dell'Università e del Politecnico di Bari and INFN, Bari, Italy ^c Fysisk Institutt, Universitetet i Bergen, Bergen, Norway ^d Høgskolen i Bergen, Bergen, Norway ^e University of Birmingham, Birmingham, UK ^f University of Catania and INFN, Catania, Italy ^g CERN, European Laboratory for Particle Physics, Geneva, Switzerland ^h Institute of Experimental Physics, Slovak Academy of Science, Košice, Slovakia ⁱ P.J. Šafárik University, Košice, Slovakia ^j Fysisk Institutt, Universitetet i Oslo, Oslo, Norway ^k University of Padua and INFN, Padua, Italy ¹ Collège de France, Paris, France ^m Institute of Physics, Prague, Czech Republic ⁿ University "La Sapienza" and INFN, Rome, Italy ^o Dipartimento di Scienze Fisiche "E.R. Caianiello" dell'Università and INFN, Salerno, Italy ^p State University of St. Petersburg, St. Petersburg, Russia ^q IReS/ULP, Strasbourg, France ^r Utrecht University and NIKHEF, Utrecht, The Netherlands

NA57 at the CERN SPS has studied the production of strange particles in Pb–Pb and p–Be collisions. Hyperon enhancements at 40 A GeV/c are presented and compared to results at 160 GeV/c beam momenta. The momentum spectra are analysed based on hydrodynamical models and freeze-out temperature, transverse and longitudinal flow velocities are extracted. Central-toperipheral nuclear modification factors at 160 A GeV/c are calculated.

International Europhysics Conference on High Energy Physics July 21st - 27th 2005 Lisboa, Portugal

*Speaker.

1. Strangeness Enhancement

An enhanced production of strange particles in nucleus–nucleus collisions with respect to proton–induced reactions was suggested long ago as a possible signature of the phase transition from colour-confined hadronic matter to a Quark-Gluon-Plasma (QGP) [1]. NA57 has measured the production of Λ , Ξ^- , Ω^- , their antiparticles and K_S^0 in Pb–Pb and in reference collisions (p-Be and p–Pb) at 40 and 160 *A* GeV/*c* in the central unit of rapidity and at medium transverse momentum ($p_T \ge 0.5 \text{ GeV}/c$) [2, 3]. The Enhancement *E* is defined as the yield per participant ($Y / < N_{wound} >$, $Y = \int_{y_{cm+0.5}}^{y_{cm+0.5}} dy \int_0^\infty \frac{dN^2}{dp_T dy} dp_T$) relative to p-Be collisions. The hyperon enhancements at 40 and 160 *A* GeV/*c* are shown as a function of centrality in fig. 1. The arrow in the 2^{nd} panel of fig. 1 indicates the lower limit to the $\overline{\Xi}^+$ enhancement in the four most central classes at 95% confidence level. At 40 *A* GeV/*c* the enhancement pattern follows the same hierarchy with the strangeness content predicted in a QGP scenario: $E(\Lambda) < E(\Xi^-)$ and $E(\overline{\Lambda}) < E(\overline{\Xi}^+)$, as already observed at 160 *A* GeV/*c* where further $E(\Xi) < E(\Omega)$ [3]. The rational behind these predictions is that the *s* and \overline{s} quarks, abundantly produced in the deconfined phase would recombine to form strange and multi-strange particles in a time much shorter than that required to produce them by successive rescattering interactions in a hadronic gas. Comparing the measurements at the two

Figure 1: Hyperon enhancements as a function of the number of participants (N_{wound}) at 40 (1st and 2nd panels) and 160 (3rd and 4th panels) A GeV/c. The symbol $\prod_{i=1}^{n}$ shows the systematic error.

beam momenta: for the most central collisions the enhancements are slightly larger at 40 than at 160 GeV/c, the increase with N_{wound} is steeper at 40 than at 160 GeV/c.

2. Collective Dynamics

The expansion dynamics of the Pb–Pb collisions has been studied in the transverse and longitudinal directions by measuring, respectively, the m_T (= $\sqrt{p_T^2 + m^2}$) spectra (details in ref. [5, 6]) and the rapidity distributions (details in ref. [7]) of strange particles, based on a hydro-dynamics inspired model [8]. A simultaneous description of all the measured particle spectra, both for rapidity and p_T can be achieved with the following set of parameters (for the most central 53% of the inelastic Pb–Pb cross section at 160 A GeV/c): freeze-out temperature $T = 144 \pm 7$ MeV, average flow velocities $\langle \beta_{\perp} \rangle = 0.38 \pm 0.02$ and $\langle \beta_{\parallel} \rangle = 0.42 \pm 0.03$, as shown in fig. 2. With increasing centrality, the freeze-out temperature decreases and the transverse flow velocity increases. In the

Figure 2: Rapidity distributions (left) and transverse mass spectra (right) of strange particles for the most central 53% of the inelastic Pb–Pb cross-section. Blast-wave fits are superimposed to the data point (full lines). The dotted lines in the left panel show the distribution expected for a thermal source without any longitudinal flow.

longitudinal direction, instead, we do not observe a centrality dependence. The freeze-out temperature is lower at 40 ($T = 118 \pm 5$ MeV) than at 160 A GeV/c, but the transverse velocity is compatible at the two energies.

3. Nuclear Modification Factors

At the Relativistic Heavy Ion Collider (RHIC), the central-to-peripheral nuclear modification factor

$$R_{\rm CP}(p_{\rm T}) = \frac{\langle N_{\rm coll} \rangle_{\rm P}}{\langle N_{\rm coll} \rangle_{\rm C}} \times \frac{d^2 N_{\rm AA}^{\rm C}/dp_{\rm T} dy}{d^2 N_{\rm AA}^{\rm P}/dp_{\rm T} dy}$$

measured for a large variety of particles has proven to be a powerful tool for the study of parton propagation in the dense QCD medium expected to be formed in nucleus-nucleus collisions (see, e.g., [9]). At SPS energy, so far, only $\pi^0 R_{CP}$ measurements were available [10]; the first results on the particle-species dependence (unidentified negatively charged hadrons, K_{S}^{0} , Λ , and $\overline{\Lambda}$) were reported recently by the NA57 Collaboration in [11]. Figure 3 (left panel) shows the results for 0–5%/40–55% R_{CP} nuclear modification factors. At low- $p_T R_{CP}$ scales with the number of participants for all particles except the $\overline{\Lambda}$. With increasing p_T , K_S^0 mesons reach values of $R_{CP} \approx 1$: we do not observe the enhancement above unity that was measured in proton-nucleus relative to pp collisions (Cronin effect [12]). An enhancement is, instead, observed for strange baryons, Λ and $\overline{\Lambda}$, that reach $R_{\rm CP} \simeq 1.5$ at $p_{\rm T} \simeq 3 \ {\rm GeV}/c$. In fig. 3 (middle panel) we compare our ${\rm K}^0_{\rm S}$ data to predictions (X.N. Wang) obtained from a perturbative-QCD-based calculation [13], including (thick line) or excluding (thin line) in-medium parton energy loss. The initial gluon rapidity density of the medium was scaled down, from that needed to describe RHIC data, according to the decrease by about a factor 2 in the charged particle multiplicity. The data are better described by the curve that does include energy loss. The prediction of a second model of parton energy loss (PQM) that describes several energy-loss-related observables at RHIC energies [14] is also in agreement with the value reached at high- p_{T} by the data. Figure 3 (right panel) shows the ratio of

Figure 3: Left: R_{CP} ratios for negatively charged particles (h^-) and singly-strange particles in Pb–Pb collisions at $\sqrt{s_{NN}} = 17.3$ GeV [11]. The width of the shaded band centered at $R_{CP} = 1$ indicates the systematic error due to the uncertainty on the values of $\langle N_{coll} \rangle$ in each class; the band at low p_T show the value expected for scaling with the number of participants. Middle: $K_S^0 R_{CP}(p_T)$ compared to predictions [13, 14] with and without energy loss Right ratio of ΛR_{CP} to $K_S^0 R_{CP}$, as a function of p_T , at the SPS (NA57 at $\sqrt{s_{NN}} = 17.3$ GeV) and at RHIC (STAR at $\sqrt{s_{NN}} = 200$ GeV [9, 15]).

 ΛR_{CP} to K⁰_S R_{CP} , as measured from our data and by STAR at $\sqrt{s_{NN}} = 200$ GeV [9, 15] (note that $\Lambda + \overline{\Lambda}$ are considered by STAR and that the centrality range used for the peripheral class is slightly different in the two experiments). The similarity of the Λ -K pattern to that observed at RHIC may be taken as an indication for coalescence effects [16] at SPS energy.

References

- [1] Rafelski J and Müller B 1982 Phys. Rev. Lett. 48 1066, ibidem 1986 56 2334
- [2] Antinori F et al. 2004 Phis. Lett. B 595 68-74
- [3] Bruno G E et al. 2004 J. Phys. G: Nucl. Part. Phys. 30 S717-S724
- [4] Tounsi A, Mischke A and Redlich K 2003 Nucl. Phys. A 715 565c
- [5] Antinori F et al. 2004 J. Phys. G: Nucl. Part. Phys. 30 823-840
- [6] Bruno G E et. al. 2005 J. Phys. G: Nucl. Part. Phys. 31 S127-S133
- [7] Antinori F et al. 2005 J. Phys. G: Nucl. Part. Phys. 31 1345-1357
- [8] Schnedermann E, Sollfrank J and Heinz U 1993 Phys. Rev. C 48 2462-2475
- [9] Adams J et al. 2004 Phys. Rev. Lett. 92 052302
- [10] Aggarwal M M et al. 2002 Eur. Phys. J. C 23 225; d'Enterria D 2004 Phys. Lett. B 596 32.
- [11] Antinori F et al. 2005 Phys. Lett. B 623 17
- [12] Cronin J et al. 1975 Phys. Rev. D 11 3105.
- [13] Wang X N 2000 Phys. Rev. C C61 064910; private communication.
- [14] A. Dainese et al., Eur. Phys. J. C38 (2005) 461; private communication.
- [15] M.A.C. Lamont, poster presentation at QM2005, Acta Phys. Slov. in print.
- [16] Hwa R C and Yang C B 2003 Phys. Rev. C 67 064902; Fries R J et al. 2003 Phys. Rev. C 68 044902;
 Greco V et al. Phys. Rev. C 68 034904.