
Leveraging Object-Oriented
Frameworks

Table OF contents

Introduction

Software Development Approaches
Procedural Programming
Object-Oriented Programming
Framework-Oriented Programming

Applying Frameworks - An Overview
Applying Application-Level Frameworks
Applying System-Level Frameworks
Key Advantages of Frameworks

Taligent's Approach to Frameworks
Taligent Frameworks - An Architectural Perspective
Taligent Application-Level Frameworks
Taligent System-Level Frameworks
Taligent Development Environment Frameworks
How Taligent is Changing the Programming Model

Domain-Specific Frameworks

Summary

Next Steps
Additional Reading
Taligent White Papers

INTRODUCTION

Over the last two decades, software development has changed significantly. Its
evolution has been motivated largely by the quest to help developers produce software

1 of 16

 Leveraging Object-Oriented Frameworks

faster and to deliver more value to end-users. Despite gains, the industry still faces
long development cycles which produce software that usually doesn't address business
problems adequately--pointing to the limitations of traditional programming and today's
system software environments. These limitations have moved the software industry to
embrace object-oriented technology (OOT) because of its potential to significantly
increase developer productivity and encourage innovation.

Taligent believes that OOT indeed has the potential to dramatically improve the
software development process. However, we believe the focus should not only be on
OOT, but on how this technology is delivered in order to fully realize the benefits that it
has to offer. In our view, object-oriented frameworks--extensible sets of object-oriented
classes that are integrated to execute well-defined sets of computing behavior--provide
the necessary foundation for fully exploiting the promises of OOT.

Which is why Taligent is building a new system software platform and integrated
development environment based entirely on OOT and object-oriented frameworks. The
Taligent environment will:

· Empower developers to fully leverage OOT with frameworks that span the entire
system. The pervasive use of frameworks in the Taligent system will deliver rich
built-in functionality at all levels and provide more computing value than when
this functionality is added on as an option.

· Provide well-defined mechanisms that allow software and hardware developers
to reuse our frameworks to extend and leverage this functionality for increased
productivity and integration.

· Provide an integrated development environment designed for object-oriented
programming (OOP) that includes a wide variety of development tools all
designed for rapid application development and customization.

This primer describes object-oriented frameworks in the context of other development
approaches and how Taligent has utilized them to realize the benefits of object
technology. After you read this primer, we hope you have a better understanding of
frameworks and Taligent's design approach, how you can benefit from frameworks,
and how you can prepare for frameworks and the Taligent system. Within this primer,
when we mention frameworks, unless we specify otherwise, we mean object-oriented
frameworks, as opposed to frameworks based on other technologies.

This primer is intended mainly for software developers and designers in commercial
and corporate software development organizations. However, hardware designers,
strategic technology planners, and technical managers will also find this primer useful.
We assume the reader has at least some knowledge of OOT and may have little to no
familiarity with frameworks. Refer to the "Additional Reading" section in the back for
more information on object technology and frameworks.

This particular primer discusses frameworks, which are certainly a cornerstone of the
Taligent system. However, future technology primers and white papers will explore
other aspects of our system so as to highlight a variety of benefits and points of
differentiation which will be important to corporate and commercial software
developers, system integrators, hardware OEMs, and other future Taligent partners
and customers.

We begin this primer by comparing various software development approaches in order
to identify the problems that object technology can solve.

2 of 16

 Leveraging Object-Oriented Frameworks

SOFTWARE DEVELOPMENT APPROACHES

Procedural Programming

In a procedural environment, the developer writes an application by making a series of
calls to library routines provided by the system (as well as to routines written by the
developer) as shown below in Figure 1). The developer's code sits on top of the system
code. The developer's code can access all of the system's services, but the system
knows nothing about the developer's code. The developer is responsible for providing
the overall behavior and flow of control of the application, with the system providing the
functionality.

The procedural approach (and its more disciplined offspring, structured programming)
has produced major improvements in the quality of software over the last twenty years,
but its limitations are painfully apparent due to the:

Difficulty in extending and specializing functionality: Because procedural systems
do not provide flexible interfaces, developers cannot selectively change or extend the
structure or behavior. It is usually "all or nothing." For example, if a developer has a
procedural library that provides basic text-editing capabilities, adding new functionality
such as tabs or subscripts in a procedural language, is usually impossible without a
great deal of additional coding.

Difficulty in factoring out common functionality for reuse: It is difficult to
consolidate common system functions that easily allows reuse by other applications. To
consider the impact on corporate developers, imagine a developer working in a large
international bank that needs to create pricing and valuation tools for financial
instruments. All the tools have common functionality whether it involves interest rate
swaps, stock options, or foreign currency. Since it is difficult to factor out the common
pieces in a procedural system, this functionality has to be duplicated every time a new
instrument is introduced, resulting in a longer time to market and a loss of competitive
advantage for the bank.

Barriers to interoperability: Even when extensions and modifications are made in a
procedural application, it is hard to ensure that the changes will interoperate correctly
with other systems that depend on the modifications. The result is that the solutions
from one developer might not have anything in common with any other developer's
solutions. So, instead of a small team of experts solving a particular problem once,

3 of 16

 Leveraging Object-Oriented Frameworks

there are numerous teams repeatedly and unsatisfactorily addressing the same
problem.

Maintenance overhead: Since there is minimal reuse of code in a procedural system,
maintenance requirements increase due to the greater amount of coding involved and
the subsequent increased potential for introducing new bugs.

This lack of extensibility, factorability, interoperability, and maintainability adds up to
lower code and design reuse. The result is that developer productivity is severely
hindered since more time and resources are spent writing code instead of solving new
problems.

Object-Oriented Programming

Although the principles of procedural programming have improved the clarity and
reliability of programs, large-scale programming still remains a challenge.
Object-oriented programming (OOP) brings a new approach to that challenge.

Unlike procedural programming, which emphasizes algorithms and procedures, OOP
emphasizes the binding of data structures with the methods to operate on the data.
The idea is to design object classes that correspond to the essential features of a
problem. Rather than trying to fit a problem to the procedural approach of a computer
language, OOP allows the programmer to use the language to effectively model and
solve real-world problems. A drawing program, for example, might define classes that
represent rectangles, polygons, and circles. The class definitions would include
common functionality that is the same for each class, such as move and rotate. Then a
developer would proceed to design a program by deriving subclasses and overriding
existing methods or implementing new methods within each class.

This development approach allows developers to break problems into small,
manageable modules of code, where the principle of encapsulation insulates
developers from having to know the implementation details. Due to the principle of
inheritance, developers can subclass to derive new classes from existing ones and be
provided with the "hooks" to add extensions.

In addition, polymorphism gives the developer flexibility to create multiple definitions for
functions. This allows classes to be more general and hence more reusable. It also
allows new components and functions to be added easily and without disturbing the
existing system. Implementing OOP makes it possible to design software that is more
extensible, reusable, and maintainable.

By helping developers design and produce code more productively, the advantages of
OOP have proven to be a significant revolution over traditional programming
techniques. However, even though the programming job is made easier, since the
developer works at a higher level of abstraction with Objects and class libraries, the
developer still has to "put the pieces together." Simply changing from procedural
techniques to OOP does not fix the problem which is that developers still are
responsible for providing infrastructure and are not provided with a clean mechanism
for extending functionality. Even with OOP, developers write a lot of code since they
are still responsible for providing the flow of control of the application. Frameworks, as
we will see next, carry the OOP paradigm further by providing infrastructure and
flexibility for deploying OOT.

Framework-Oriented Programming

4 of 16

 Leveraging Object-Oriented Frameworks

Taligent defines framework-oriented programming as the exploitation of object-oriented
frameworks to maximize the benefits of OOT. Although frameworks are not new to the
software industry, there is a great deal of discussion about them in object technology
circles. What exactly are frameworks? A widely accepted definition comes from Ralph
E. Johnson of the University of Illinois:

"A framework is a set of classes that embodies an abstract design for solutions to a
family of related problems."[1]

Another way of looking at frameworks is as a prefabricated structure, or template, of a
working program. For example, an application framework provides the support and
"default" behavior for drawing windows, scrollbars, and menus.

Taligent believes that frameworks, which are central to its new operating environment,
are the most important advancement in OOT. Because frameworks provide
infrastructure and flexible interfaces, they avoid the problems and overhead that
traditional programming impose on developers. With well-designed frameworks, it is
much easier to add extensions, to factor out common functionality, to enable
interoperability, and to improve software maintenance and reliability.

The way that frameworks, in general, achieve these benefits over other development
approaches are based on two fundamental principles:

Frameworks provide infrastructure and design: Frameworks are not simply
collections of classes. Rather, frameworks come with rich functionality and strong
"wired-in" interconnections between the object classes that provide an infrastructure for
the developer. It is these inter-connections that provide the architectural model and
design for developers and frees them to apply their expertise on the problem domain.
By providing an infrastructure, the framework dramatically decreases the amount of
standard code that the developer has to program, test, and debug. The developer
writes only the code that extends or specifies the framework behavior to suit the
program's requirements. We represent this code visually as a "puzzle piece" since this
is the creative and undefined part the developer provides (see Figure 2 below)

The framework calls you, you don't call the framework: Framework-oriented
programming requires a new way of thinking. In procedural systems, the developer's
own program provides all of the structure and flow of execution and makes calls to
function libraries as necessary (see Figure 2). However, in framework-oriented
programming, the roles are turned around. The role of the framework is to provide the
flow of control, while the developer's code waits for the call from the framework. This is
a significant benefit since developers do not have to be concerned with the details, but
can focus their attention on their particular problem domain.

5 of 16

 Leveraging Object-Oriented Frameworks

However, this flip-flop in control can be a significant change for developers experienced
only in procedural programming. The developer must learn to think in terms of the
responsibilities of the objects--what are the objects required to do--and let the
framework determine when the objects should do it. Once the investment has been
made to understand frameworks, developers will begin to realize the enormous
advantages that framework-oriented programming can deliver over other development
approaches.

1. "Designing Reusable Classes", The Journal of Object-Oriented Programming, Vol.1,
No.2, 1988, pp 22-35

APPLYING FRAMEWORKS -AN OVERVIEW

There are many types of frameworks (not all object-oriented) on the market for solving
various types of problems. The types of frameworks range from application frameworks
that assist in developing the user interface, to lower-level frameworks that provide basic
system software services such as communication, printing, and file systems support.
Within this range there are also domain-specific frameworks that address problems in
particular areas. There are quite a number of commercially available application
frameworks. MacApp® (Apple Computer), and OWL• (Borland International) are
examples of application frameworks. There are far fewer system-level frameworks, but
examples include the virtual memory and process scheduling frameworks that are part
of the CHOICES operating system (University of Illinois).

To illustrate the principles and benefits of frameworks, let's look at how a typical
application framework is used. Later, we will show how Taligent is applying the same
framework principles and concepts not only at the application level but throughout all
levels of its system software environment, thus building the system "from the bottom
up" with frameworks.

Applying Application-Level Frameworks

Out of the box, a typical application framework provides the developer with the basic
functionality of an application, such as File and Edit menus, windows and printing.
Figure 3 shows a very simple application before the developer starts adding any major
customizations.

Initially, the program does not provide any real user functionality--it is still an empty
program template. It's up to the developer to fill in the functionality that is unique to the
application, such as the specific commands in the new menus, the text and graphics
that go in the windows, the routines to write data to a file on disk, and the actions to be
carried out when the user clicks the mouse.

6 of 16

 Leveraging Object-Oriented Frameworks

For example, the developer could add a "Tools" menu that brings up a tool palette and
allows the user to select and use various tools. To do this, the developer creates or
modifies classes that:

· Add a new Tool menu.

· Display the Tool palette.

· Add the behaviors represented by the tools in the Tool palette.

· Change the standard arrow cursor so that when the mouse is clicked on the tool
palette, the cursor changes to a cross ("+"), I-Beam, paintbrush, or eraser
depending on what tool is selected.

You now have the modest beginnings of a working drawing application as shown in the
upper part of Figure 4 The developer would continue to take advantage of the
application framework's object-oriented characteristics to extend the application further.

In the lower part of Figure 4, we show how in effect, you could create an application by
customizing the default behavior of the application framework. This might involve
subclassing certain framework classes and overriding specific methods, creating
instances of certain other classes, or providing entirely new classes. Overridden
methods will be called by the framework when the framework designers think they
should be called, thus changing the default behavior. The puzzle pieces below the
framework represent the code that developers write to add their specific functionality.
The framework calls the behaviors the developer wrote to perform the intended action.

Applying System-Level Frameworks

In the same way that an application framework provides the developer with
prefabricated functionality and extensibility at higher levels of the system, system-level
frameworks leverage the same concepts and provide similar benefits at lower levels of
the system. One advantage of applying frameworks at lower levels of the system is that
this approach allows the system to be extended to add new kinds of hardware devices.
In the longer term, a more important advantage appears. As hardware technology
evolves, it is not possible to predict where the system can be usefully extended.
Frameworks provide a mechanism to extend the system virtually everywhere, not just
where the system developer thought the system might be extended.

7 of 16

 Leveraging Object-Oriented Frameworks

Applying frameworks at the system level is a strategy that has not been fully exploited
to the extent that Taligent will with our object-oriented system software platform which
we will discuss in more detail later. To illustrate the benefits of system-level frameworks
in general, consider for example, a set of frameworks which could assist the developer
in adapting new devices to the system. These frameworks could provide the foundation
for supporting new and diverse devices such as networking and storage devices, as
well as audio, video, MIDI, and animation devices.

In a traditional operating system, developers who need to support these new kinds of
devices have to write entire device drivers for each new device. However, with
frameworks, developers only supply the characteristics and behavior specific to each
new device. An immediate benefit to developers is that the generic code needed for
each category of device is already provided by the framework, resulting in less code for
the device driver developers to write, test, and debug.

Key Advantages of Frameworks

The overall benefit of frameworks is that they enable a higher level of code and design
reuse than what is practical with other design approaches. In addition to frameworks,
there are certainly many other reuse technologies such as 4GLs, code generators, and
class libraries. However, 4GLs and code generators are based on procedural
programming techniques and cannot easily provide the infrastructure and design
guidance that are possible from frameworks. While class libraries do improve code
reuse, they provide functionality at a very low level and force the developer to provide
the interconnections between the libraries. These advantages of frameworks over
procedural approaches and class libraries are much more difficult to create or recreate
and constitute the real value of frameworks.

Also, the developer should realize that the benefits from frameworks and reuse are
gained over time, since the productivity gains do not come just from the first or second
use, but from multiple uses of the technology. We have touched on several benefits of
using frameworks, but the following summarizes the major advantages:

Provide infrastructure and architectural guidance: By virtue of the interconnections
among the class libraries, much of the needed functionality already exists in the
framework, thus reducing coding, testing, and debugging efforts. In addition,
frameworks encourage better design in the code that developers do write by providing
an "example" to guide them to more effectively utilize object technology. Applications
developed with frameworks tend to be smaller, as well as more maintainable and
reusable.

Provide a mechanism for reliably extending functionality: While objects and object
classes provide interfaces for extending functionality at a fine-grained level,
frameworks provide this flexibility at a higher level. In this way, applications can be
developed by using the framework as a starting point and writing smaller amounts of
code to modify or extend the framework's behavior. These extensions can be added
without sacrificing compatibility and interoperability because the interfaces are well
defined.

Reduce maintenance: Due to inheritance, when a framework bug is fixed or a new
feature is added, the benefits of those changes become available more quickly to the
derived classes. Also, changes are made only in one place, thus, the chance of
introducing additional errors in the code is minimized.

8 of 16

 Leveraging Object-Oriented Frameworks

TALIGENT'S APPROACH TO FRAMEWORKS

The complexity and lack of productivity in today's computing environments, as well as
the stagnation in the computer industry, point directly to the need for a new software
development approach based on frameworks. OOT can provide renewed vitality and
productivity to the entire industry. However, in our view, the ultimate success of the
emerging OOT paradigm hinges on the availability of object-oriented frameworks.

Up to this point, we have presented the software development problems faced by the
industry and have shown how OOT and frameworks can address these problems and
issues in new ways. Next, we will discuss how Taligent is extending the OOT and
framework paradigms in order to create a new system software platform for innovation
that greatly enhances a developer's ability to deliver more powerful solutions. Designed
from the bottom up on OOT and frameworks, the Taligent environment will, as we've
noted in the introduction of this primer:

· Empower developers to fully leverage OOT with frameworks that span the entire
system. The pervasive use of frameworks in the Taligent system will deliver rich,
built-in functionality at all levels and provide more computing value than when
this functionality is added on as an option.

· Provide well-defined mechanisms that allow software and hardware developers
to reuse our frameworks to extend and leverage this functionality for increased
productivity and integration.

· Provide an integrated development environment designed for OOP that includes
a wide variety of development tools all designed for rapid application
development and customization.

This approach means that all the advantages of frameworks can be leveraged
throughout the system: at the application level for such functions as graphical and text
editing, data access, and user interfaces; and at lower levels of the system for services
such as device drivers, printing, communications, file systems, and I/O.

Taligent Frameworks - An Architectural Perspective

Several application frameworks on the market today (such as the MacApp and OWL
frameworks) take the architectural approach of layering objects and class libraries on
top of procedural operating environments. While this approach has been a substantial
improvement over procedural operating environments and has done a lot to introduce
and promote OOT in the desktop computing industry, it creates its own unique
limitations. Difficulties do not arise out of the use of layers, rather, they come from
layers that are incomplete and because the layers do not fully leverage the benefits of
OOT throughout lower parts of the system.

While object-layered systems have added value by pioneering object technology on top
of procedural systems, we believe that the industry is ultimately moving towards
systems that fully exploit OOT. Only a system built from the ground up with OOT can
expect to achieve this goal. Taligent is taking this design philosophy in creating a
system based entirely on OOT and frameworks.

Since fully object-oriented systems are optimized to take full advantage of OOT,
software design is taken to a higher level of abstraction, allowing developers to more
easily map the application to the business requirements of the problem. This enables
development teams to maximize the use of their resources to produce applications

9 of 16

Leveraging Object-Oriented Frameworks

more quickly and to innovate where it is currently impractical with today's systems.

Taligent Application-Level Frameworks

Application frameworks in the Taligent environment will extend the entire scope and
concept of frameworks that are available today to empower developers beyond the
user interface. So, while the application frameworks available today are excellent
examples of tools for developing applications, the greater value of frameworks is
realized when they are applied in more pervasive ways at both the application and
system levels. For example, at the application level, Taligent changes the whole
concept of "applications." In the Taligent environment, programs are not embodied in
old-style, monolithic applications; rather, users deal with information--the data that is
critical to their needs and problem. There will be more information on this concept in
later technology primers and white papers, but this is an indication of the scope of how
Taligent is changing the current computing model.

Although it is premature to discuss the specifics of all Taligent frameworks, one
example of an application-level framework that will be part of the Taligent environment
is a graphics-editing framework (see Figure 5). This framework will provide all the
common elements for 2-D and 3-D graphics editing, such as support for the movement
and layout of graphic objects, and tools for creating rectangles, polygons, and circles.

This type of framework could be used in two ways. First, consider a developer who is
creating, for example, a fully integrated presentation package and needs
graphics-editing capabilities (in addition to text editing, spell-checking, etc.). The
developer could use the Taligent graphics-editing framework to enhance the
presentation package with graphics-editing capabilities. This frees developers from
having to build the graphics- editing software themselves and allows them to
concentrate on areas where they can add the most value. A second use would be to
support incremental development of more sophisticated graphics editors or graphics
editors for specific markets. Since the framework provides most of the common
elements of graphics editing, a developer could start with the Taligent framework and
add functionality for their particular market, thus reducing their start-up costs.

Taligent System-Level Frameworks

To envision the application of Taligent frameworks at the system level, suppose the
developer has a graphics device framework as depicted in Figure 6. The framework
could provide preexisting functionality, such as 2-D rastering, color map support, device
transformations, and dithering for any device from "dumb" frame buffers to graphics

10 of 16

 Leveraging Object-Oriented Frameworks

accelerators. This type of framework could allow easier additions of new graphics
devices since the developer only needs to code what is different about each device.

To support an 8-bit frame buffer, for example, a developer would inherit most of the
preexisting functionality from the framework, so the amount of code the developer
writes would be relatively small. However, if an OEM is supplying a board for a 24-bit
frame buffer, the OEM does not need color map support or dithering. So, in this case,
the OEM developer either does not inherit those methods or does not use them to
implement the 24-bit driver. There might be some additional features that developers
want to add, so, the puzzle piece might be a little larger than with the 8-bit frame buffer.

Now, suppose a system vendor needs to create a driver for a graphics accelerator. In
this case, the driver writer starts with the framework and subclasses and replaces code
that has been written to do the 2-D rastering (how to draw a line or a fill or how to do a
transfer mode), and replaces it with a direct call to the hardware capability that is in the
board. In this manner, the developer can choose not to use the code in the Taligent
system and instead replace it with code that uses the hardware to implement these
methods.

To create raster printer drivers, developers could again subclass from the framework,
and implement/override the default methods to support a wide range of printer
functionality.

Because these new devices are added to existing system frameworks, all applications
can take advantage of new system extensions and functionality without modification.
Since the applications access functionality at a higher abstraction, they get the
powerful, new implementations for "free."

Taligent Development Environment Frameworks

In addition to providing frameworks at the application and system levels, Taligent
believes it is just as important to apply the concept of frameworks to the development
environment in order to increase developer productivity. To do this, we will offer
powerful and customizable development tools for developing, implementing, and
debugging object-oriented software. The development environment is designed to
speed program development by supporting an incremental and interactive approach to
writing, debugging, and testing programs. In this environment, programmers can focus
on solving one problem at a time, rather than solving many problems at once.

Like other parts of the Taligent environment, the development system is built on the
concept of frameworks. So, over time, as the development environment evolves,
developers will be able to subclass from the development environment frameworks and

11 of 16

 Leveraging Object-Oriented Frameworks

inherit from the existing functionality to create their own custom tools such as viewers,
browsers, editors, debuggers, compilers, and on-line documentation.

How Taligent is Changing the Programming Model

Since the Taligent environment is based on framework-oriented technology, developing
software in this environment consists of writing the domain-specific puzzle pieces that
adhere to the protocols of the various frameworks (see Figure 7). Through
framework-oriented technology and programming, the Taligent environment endeavors
to change the whole concept of programming and dramatically increase developer
productivity. Programming in the Taligent environment is accomplished by deriving
classes from the extensive suite of preexisting frameworks, and then adding new
behavior or overriding inherited behavior as required.

The developer's application becomes the collection of code that is written and shared
by other framework programs. This is a powerful concept because it allows developers
to concentrate on what is essential and different about each particular problem and
write only the code needed by the frameworks. And, since developers start from the
same base, they are able to build on each other's work. In this world, overhead and
error rates are greatly reduced, and software simply gets completed and delivered
more quickly.

This powerful model is possible because of the framework's programming interfaces.
Often, frameworks are represented at the top of the system hierarchy with one set of
application programming interfaces (API). However, frameworks, particularly as they
are applied at the system level, actually have two APIs operating, as shown in Figure 8.

12 of 16

 Leveraging Object-Oriented Frameworks

The first API is the client API which is used by other frameworks or application
developers. This API is for developers who just want a simple abstraction and to simply
be a user of the framework services. For example, as illustrated in Figure 8, an
application framework that needs to write out data to a file, would call the client API of
the file system framework.

The second API is known as the framework API and is for developers who want to take
advantage of the flexibility and extensibility that frameworks provide. This API provides
all the hooks to the developer's code (the puzzle pieces) that modify the framework's
behavior to provide the desired software- or hardware-based solution. It is through this
interface that the principle of "don't call us, we'll call you" is implemented. In some
cases, the amount of developer code is minimal. In other cases, the developer might
make extensive modifications and create something completely new.

DOMAIN-SPECIFIC FRAMEWORKS

By providing a framework-based system, the Taligent environment presents an ideal
platform for creating and deploying innovative domain-specific solutions. It is common
for developers to write a family of closely related programs. For example, an
independent software vendor might be producing a product line for learning foreign
languages. Or a corporate developer might need to provide custom accounting
programs for different subsidiaries in the organization. In either case, the job can be
made easier by capturing common code in a framework.

Traditionally, this problem might have been attacked by providing domain-specific
procedural libraries of functions. Or, better yet, the code might have been combined
into class libraries of what were hoped to be reusable objects. Unfortunately, this has
often not proved to be successful because it is hard to provide default behavior in a
library. Using a library typically involves reading the interface to determine which
functions are available to call and then trying to figure out which ones are needed to be
called and in which order. It is usually so difficult to figure out how to use and customize
the library that the developer ends up rewriting most code from scratch for each new
project.

Frameworks are a better way to embody domain expertise because the developer can
provide default behavior in the framework. Therefore, the user of the framework does
not have to know how or when to call each function--the framework is already wired to
call the right Things• at the right time. All the developer needs to know is where the
hooks are to specify and extend the framework's behavior.

SUMMARY

Improving developer productivity is a major challenge for the entire industry. While
current approaches have advanced productivity, the next generation of software must
fully exploit OOT in order to provide the productivity and development leverage that is
needed to solve today's complex computing problems.

While the use of object technology has demonstrated the capability to significantly
increase developer productivity and enhance program maintainability, Taligent
contends that is not just a matter of switching to OOT, but how this technology is
implemented. The success of OOT hinges on an infrastructure like frameworks that
enables developers to change their programming mindset, design software that is more
reusable and maintainable, and create innovative software that addresses business

13 of 16

 Leveraging Object-Oriented Frameworks

problems.

Frameworks and systems that are based on frameworks, such as the Taligent
environment, empower developers to fully realize the potential of improved design and
code reuse, including reduced development requirements, reduced maintenance, and
higher reliability. In addition, programming based on frameworks enable the following
changes:

Developers can focus on their true "value-added": Just as standard programming
interfaces insulate software routines from system dependencies and standard utilities
facilitate development, frameworks enable software developers to concentrate on
application solutions and rely on the framework to provide consistent services. This
frees developers who are not necessarily experts in a certain area from the complexity
of the underlying details. In this manner, frameworks encourage an environment of
solving domain problems instead of programming problems.

Good design practices and proliferation of expertise: Good software design in a
particular area requires domain knowledge that is typically acquired only by experience.
Corporate and commercial development organizations, and systems integrators as
well, have this acquired experience in particular areas, such as manufacturing,
accounting, insurance, or financial instruments. Frameworks allow organizations to
package the common characteristics of that expertise by embodying it in the
organization's code. Frameworks and the embodied expertise behind the frameworks
have a strategic asset implication for internal use and for those organizations who see
business opportunities for reselling specialized knowledge. For example, frameworks
give systems integration companies with expertise in vertical markets a distribution
mechanism for packaging, reselling, and deploying their expertise.

Improved consistency and compatibility: Because frameworks embody expertise,
problems are solved once and the business rules and design are used consistently.
This allows an organization to build from a base that has been proven to work in the
past. Another advantage is that since different applications share the same "DNA" from
the system, the applications can work together (for example, cut-copy-paste or
drag-and-drop) in more substantial ways. The resulting system is better integrated from
a user's point of view, while requiring less work by developers to get their programs to
work together.

Taligent wants to shift the process of development away from today's focus on working
around operating system barriers. Simplifying development efforts with frameworks and
an object-oriented development environment allows corporate and commercial software
developers, as well as hardware OEMs, to focus on innovations that address real-world
business problems and issues.

Frameworks also create the potential for a new business model where the pace at
which new ideas are delivered to the marketplace is dramatically accelerated and the
cost of entry for a new product is limited only by the value of the idea. The renewal of
innovation in the industry will restore vitality and fuel new growth opportunities for the
entire computing industry.

As a result, a whole new marketplace is enabled where every player in the computing
industry stands to gain tremendous advantages. Commercial software developers,
value-added resellers, and system integrators can gain increased productivity through
design reuse, more manageable development, and an improved ability to deal with
complexity in data, networks, and logic. Corporate developers attain a better linkage
between business needs and the supporting applications. This empowers software to

14 of 16

Leveraging Object-Oriented Frameworks

work as a catalyst, enabling companies to rapidly exploit new opportunities, rather than
acting as a bottleneck.

Frameworks provide system OEMs the ability to differentiate themselves economically
by allowing an easier way to package new functionality with systems. And finally,
end-users will reap the advantages of not only seeing today's horizontal software
produced faster and more economically, but of a whole new category of smaller, more
innovative tools that are more tailorable to their unique needs.

NEXT STEPS

We hope this primer has provided some insight into frameworks and how you can
benefit from them. In order to learn more about OOT and frameworks and how to
prepare for the Taligent environment, we encourage developers to:

Learn OOP: Any object-oriented language can help you learn OOP. C++ is the first
language that will be supported in the Taligent environment, but it is expected that
other OO languages such as Smalltalk will be supported.

Learn object-oriented design (OOD): Developers who simply use C++ as a better C
without fundamentally changing their design approach will not realize the real benefits
of object technology. Also, doing a good job of OOD requires more than just learning
an OOP language. The whole point of OOP languages is to allow a different approach
to software design. This approach takes time and energy to learn. A good method of
learning OOD is to study the design of mature frameworks and learn by example. Also,
there are several books and commercially available training courses to help learn OOD.

Learn to design and create your own domain-specific frameworks: Begin with
class libraries and understand both their power and limitations. Then begin to think in
terms of frameworks and framework-oriented programming, both at the application
level and the system level. Becoming familiar with commercially available frameworks
will also assist in the learning process. Even though Taligent will provide a wide range
of frameworks, remember that the even greater value in frameworks is realized when
you create your own for your particular problem domain.

Partner with Taligent: You are invited to come to us with questions and ideas. We
especially encourage corporate and commercial developers who have new ideas for
applications that are not possible or feasible on today's systems. You can also request
to be placed on the mailing list for future business and technology primers and white
papers. Contact us by sending e-mail to developer_partnerships@taligent.com or
calling 408-862-7465 (408-TO-B-PINK).

Additional Reading

For additional information on object technology and frameworks, we suggest the
following sources:

The C++ Programming Language, Second Edition, Stroustrup, Addison-Wesley

Developing Object-Oriented Software for the Macintosh, Goldstein and Alger,
Addison-Wesley

Object-Oriented Design with Applications, Booch, Benjamin/Cummings

15 of 16

 Leveraging Object-Oriented Frameworks -

Object-Oriented Technology: A Manager's Guide, Taylor, Addison-Wesley

Taligent White Papers

Below is a list of available Taligent white papers and backgrounders:

A Study of America's Top Corporate Innovators, Taligent, Inc., 1992

Lessons Learned from Early Adopters of Object Technology, Taligent, Inc., 1993

Driving Innovation with Technology: Intelligent Use of Objects, Taligent, Inc., 1993

JavaTM is a trademark of Sun Microsystems, Inc.

Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

Other companies, products, and service names may be trademarks or service marks of others.

Copyright Trademark

 Java Education Java Home

16 of 16

 Leveraging Object-Oriented Frameworks -

