
oTN-2009-01 openlab Summer Student Report

Nagios Messaging with ActiveMQ
Author : Julien Perrochet

Supervisor : James Casey
September 2009

Version 2.2
Distribution: Public

..Abstract 2
..Introduction 3

..Project description 3
Integration of Enterprise Messaging into an open-source monitoring system -

..Nagios
 3
...Nagios’ Messaging Needs 4

...Current Messaging Scheme 4
...Outgoing messages
 4
...Incoming messages
 4

..Configuration messages
 4
...Getting the picture
 5

..Script details
 5
...New Messaging Scheme 6

..Changes
 6
...Getting the picture
 6

..Detailed modifications
 7
..Scripts
 7

...Nagios Services
 7
...Message Handlers 8

..Setup a new Architecture 8
..ActiveMQ Setup
 8

...ActiveMQ Configuration
 8
...Nagios services
 9

...Performance 9
...Conclusion 11

...Comments 11
..Links 12

...Project-related
 12
...Bibliography
 12

CERN openlab

Abstract
This work is about service availability monitoring with Nagios and messaging with
ActiveMQ in the context of WLCG.

Nagios needs to communicate with other nodes on the network. Not only because it is
testing hosts and services, but also because it has to send and receive information about
services states, changes and configurations. This information is handled via messages
traveling through the messaging system.

The aim of this work is to replace the old local file-based messaging system with a local
ActiveMQ message broker instance and to directly bridge this installation with the existing
messaging network while conserving the easy way to customize message types with the
help of message-handlers definitions.

Moving to the new messaging scheme will homogenize the architecture and centralize a
part of the messaging configuration into the broker.

Nagios - ActiveMQ Binding

p. 2 / 12

Introduction
This document will explain the practical changes in the infrastructure of nodes hosting an
instance of Nagios caused by the project. The full project (see original description) could
not be completed, as this required some much deeper knowledge of Nagios. One step has
however been successfully accomplished.

This document can also serve as a basic documentation about the way Nagios
communicates with the rest of the network via messaging for both the old and the new
way, and how to install such a new infrastructure.

Part of my work also consisted in creating a Twiki page. It may still evolve and holds other
informations related to the project, so I recommend reading it if you are somehow involved
in Nagios and ActiveMQ.

Below you can find the description of the project as it was submitted to me.

1 Project description

Integration of Enterprise Messaging into an open-source monitoring system -
Nagios

EGEE and WLCG are moving to using Nagios to measure reliability and availability
of WLCG sites : https://twiki.cern.ch/twiki/bin/view/EGEE/OAT_EGEE_III. While
messaging is currently used to communicate between Nagios instances on different
sites, custom protocols and add-ons are used for components inside Nagios to
communicate internally- We also have a complex queuing mechanism implemented
to insulate the Nagios service from remote messaging clients.

We propose to :

1. Investigate messaging to perform this internal communication. Some similar work
has been proposed but not yet carried out within the nagios community :
http://community.nagios.org/wiki/index.php/Nagios_AMQP. We would build on these
ideas and compare the performance and characteristics of a Nagios built on
messaging against current standard implementation.

2. Replace the custom queuing code on the Nagios server with a local ActiveMQ
instance, and bridge this ActiveMQ to the global network of brokers.

The first proposal could not be accomplished for the reason that it would imply a very deep
knowledge of how Nagios works and is implemented. Furthermore, I also lack the
programming skills and time required for such a deep inspection and modification.

The second proposal could however be fulfilled, and this document holds the information
about the work that has been achieved.

Nagios - ActiveMQ Binding

p. 3 / 10

https://twiki.cern.ch/twiki/bin/view/EGEE/OAT_EGEE_III
https://twiki.cern.ch/twiki/bin/view/EGEE/OAT_EGEE_III
http://community.nagios.org/wiki/index.php/Nagios_AMQP
http://community.nagios.org/wiki/index.php/Nagios_AMQP

2 Nagios’ Messaging Needs

In order to work properly with the rest of WLCG monitoring, Nagios has to communicate
with other nodes on the network. The following subjects are treated over messaging :

• Service Checks : Information about service checks results. These results have to be
sent into the messaging system to be consumed by other Nagios instances and any
client willing to get information about service checks, such as virtual organizations
(VO) specific display tools.

• Service Notifications : Some changes in services availability need to be reported to
other Nagios instances and to any client willing to be warned when such changes
occur, such as monitoring dashboards or ticketing systems.

• Configuration changes : Notifications about Nagios configuration changes are sent
via messaging.

This list is however not definitive, the messaging system could also be used for other
purposes, for example to send comments to a Nagios instance. Both the current and the
new messaging scheme allow to add such features easily by using specific message
handlers. See corresponding section for more details.

3 Current Messaging Scheme

Outgoing messages

Current typical Nagios instances do the following when a message has to be sent :
when a check has been accomplished, another script is ran, which will assemble
the information it was given to in a message and drop this message in a specific
directory that is serving as a message queue. Then, Nagios will regularly trigger
another script that will be in charge of sending pending messages out to the
messaging network.

Incoming messages

Besides Nagios, there is a daemon running that will continually import check and
notification messages to the directory queue. A script will then regularly be triggered
to import those pending messages as passive checks into Nagios.

Configuration messages

Verification for new configurations are actually only triggered by a Nagios check, but
the configurations themselves are not generated by Nagios. On each run, NCG1 will
put its data into a database and a Nagios script will then send out this data. The
daemon messaging script will handle incoming configuration messages and drop
them into the local database.

Nagios - ActiveMQ Binding

p. 4 / 12

1 Nagios Configuration Generator : used to generate nagios configurations at installs and updates.

Getting the picture2

Script details

•
 handle_service_check is called to send out information relative to a specific
check. It creates a message from the check data and drops it into the directory
queue. IPC::Dirqueue is used to manage the directory queue.

•
 handle_service_change does the same as handle_service_check but for
notification messages.

•
 check_config checks if the configuration database contains new or updated
configuration confirmation. If so, it raises a WARNING.

•
 recv_from_queue imports messages from the directory queue into Nagios as
passive checks.

•
 send_to_msg checks if some outgoing messages where cached in the directory
queue and sends them to the messaging system.

•
 msg_to_queue is a daemon listening on specific queues from the messaging
system. When messages are received, they are added to the directory queue.

General scheme of the current architecture.

Nagios - ActiveMQ Binding

p. 3 / 10

2 Picture kindly provided by Emir Imamagic.

4 New Messaging Scheme

Changes

As the project proposal states, the new scheme replaces the custom queuing
structure by an ActiveMQ message broker. Each interaction is directly done with the
local message broker, except when it is unavailable ; in which case outgoing
messages will be cached on the disk until the local broker is available again.

This new architecture is simpler as it homogenizes the messaging infrastructure
and greatly improves end-to-end latency from several minutes down to
milliseconds.

Basically, the msg-to-queue daemon has been modified to interact with the local
broker and to directly write to Nagiosʼ command pipe, while the recv_from_queue
script was removed and the other scripts adapted.

Getting the picture

Messaging Backbone

Local Message Broker

Nagios

Event

Handler

config.db

check_config

msg-to-queue

Incoming

Messages

Event

Messages

Outgoing Config'

Messages

activemq-configure.sh

generated bridges

Passive

submissions

Incoming Config'

Messages

Any Message

Stream

Message

Handlers

Definition

Nagios - ActiveMQ Binding

p. 6 / 12

Detailed modifications

Scripts
To allow deploying of the new system in parallel with the current one through the same
package and to avoid confusion, the new scripts have been renamed. They therefore have
a modified to <new_name> following them in the description.

•
 handle_service_check modified to handle_service_check_amq - Now directly
sends the MetricOutput to the local message broker (or any specified broker).
Messages will be stored on disk if the broker is unavailable via the
IPC::Dirqueue Perl module.

•
 handle_service_change modified to handle_service_change_amq - Now directly
sends the Notifications to the local message broker. Messages will be stored
on disk if the broker is unavailable.

•
 check_config modified to check_config_amq - Does the following :
• Still checks if the local NCG SQLite database holds new or updated

configurations. If so, it raises a warning.
• Now checks if the local NCG SQLite database holds configurations to export and

sends them to the local message broker.
•
 recv_from_queue Has been removed as modifications on the msg-to-queue

daemon made it obsolete.
•
 send_to_msg modified to flush_dirqueue_msg - Checks if some outgoing

messages where cached on the disk and sends them to the local message
broker. Messages are directly cached on the disk only if the local broker is
unavailable.

•
 msg-to-queue modified to msg-to-handler - Has been modified to listen to
queues on the local broker. Calls to corresponding message handlers still work
in the same way as before.

•
 test_local_broker New script that sends a message on a queue and tries to
receive it. Used to check the local broker capacities.

Nagios Services
• org.egee.CheckLocalBrokerMessaging - new - Checks if the broker can receive

and send a message to/from a queue by calling test_local_broker.
• org.egee.RecvFromQueue - removed - This service triggered the recv_from_queue

script and is therefore useless in the new architecture.

Nagios - ActiveMQ Binding

p. 3 / 10

5 Message Handlers

The actual messaging scheme uses so called Message Handlers to process incoming
messages. When the msg-to-queue or the msg-to-handler daemon are started, they
load a Message Handlers definition file (/etc/msg-to-queue/msg-to-queue.conf)
which specifies queues to listen to and a specific handler for each of these queues. When
a message is received, it is passed to the corresponding handler and processed by a
custom method defined within the message handler.

The new architecture only requires little or no modification of the existing message
handlers : only MetricOuput.pm had to be modified. This handler has also been renamed
to MetricOutputNagios.pm . Furthermore, the definition file doesnʼt need any
modification and can be used in the same way as before.

If new handlers have to be added, the procedure is exactly the same as before.

6 Setup a new Architecture

The described steps must be followed if you donʼt have access to a bundle install (via
YUM or YAIM for example) and have to modify an existing Nagios installation. These steps
are quite straight-forward.

ActiveMQ Setup

ActiveMQ can be installed very easily with the help of YUM if you use it. Typing the
following to the command line should be enough :

$ yum install fuse-message-broker

You should need the egee-SA1 repository in your /etc/yum.repos.d/ directory to
be able to install AtiveMQ.

If you canʼt install ActiveMQ via YUM, you can also install it by directly downloading
the FUSE package from the following address, as there are currently no special
configurations coming with the YUM install :

http://fusesource.com/products/enterprise-activemq/

ActiveMQ Configuration

I coded a configuration script that should do the biggest part of the work.
activemq-configure.sh will read the following files to generate the /etc/
activemq/activemq.xml configuration file :

• configs/activemq_raw_xml.xml – The model for the ActiveMQ configuration
file.

• configs/activemq-configurator.cfg – The variables that will be written to
the configuration file. If defaults should be used, only make sure the backbone
broker address is correct.

• /etc/msg-to-queue/msg-to-queue.conf – The message handlers definitions.
This information is used to create the appropriate bridges with the backbone.

Nagios - ActiveMQ Binding

p. 8 / 12

http://fusesource.com/products/enterprise-activemq/
http://fusesource.com/products/enterprise-activemq/

The activemq-configure.sh script should be run from the same directory it lives
in so it can correctly access the other configuration files.

Also keep in mind that you have to restart the broker each time you want to make a
configuration change effective. This is achieved with the following command :

$ service activemq restart

Nagios services

The updates concerning Nagios have to be done by hand. First, you will have to
copy the new scripts to the Nagios script directory, normally /usr/libexec/grid-
monitoring/plugins/nagios/.

Then, update the Nagios services so they use the new scripts. You will have to edit
the files that live in /etc/nagios/wlcg.d. If you donʼt know how to do edit Nagios
object definition files, take a look at the documentation at
http://nagios.sourceforge.net/docs/3_0/ .

Concerning the msg-to-queue daemon, you will have to remove it and get the msg-
to-handler one running.

And at last, add the new message handlers. They generally live in a directory
looking like this, but their exact directory should be given with them : /usr/lib/
perl5/vendor_perl/5.8.5/GridMon/MsgHandler/<Message_Handler>.pm

If you only change the scripts, Nagios doesnʼt need to be restarted. But if you
modified the object definition files, you will have to.

7 Performance

A stress test has been run against a machine hosting a new setup. This machine was an
Intel(R) Xeon(R) CPU E5410 @ 2.33GHz (2/8) box running under Scientific Linux Cern 4.8
(name : lxbrf2711).
Up to 20 messages per second could be processed continuously. If the message rate goes
higher, new messages simply queue up on the message broker.

The command pipe seems to represent the principal bottleneck, as each message has to
be written to it. Messages that donʼt need any writing to pipe are processed much faster
and allow rates higher than 1000 msg/sec.

Globally, testing shows that such a setup is able to handle relatively high constant
message flows and correctly deal with consequent message bursts.

Nagios - ActiveMQ Binding

p. 3 / 10

http://nagios.sourceforge.net/docs/3_0/
http://nagios.sourceforge.net/docs/3_0/

The two plots below show message enqueuing and dequeuing rates (red = enqueued,
green = dequeued) and the corresponding CPU usage :

The plots describe two different phases : first, the incoming message rates is increasing
and gets over the maximal consumption rate. This causes the queue to grow. When no
more messages are enqueued, the dequeuing process can catch up. Then, a second
message flow, this time limited to 10 msg/s, comes in and can be processed on-the-fly
without notifiable CPU consumption overhead.

A possible hint to this high system CPU usage when the message rate gets over 20 msg/s
might be several Nagios plugins and processes competing to write to the command pipe.
This issue should be investigated if high message rates are to become common. It can
however be left aside at the moment as typical message flows currently never even reach
1 msg/s.

Nagios - ActiveMQ Binding

p. 10 / 12

8 Conclusion
A new functional architecture could be designed and has proven its usability. Furthermore,
messages now directly go into the messaging system, homogenizing the global
infrastructure and reducing overall end-to-end latency.

The objective of replacing the local file-based message queue with a local message broker
while keeping the system flexible and performant has been achieved.

9 Comments
The main part of my work as an OpenLab student has been to get up to speed with the
Nagios monitoring software and the basics of messaging with an ActiveMQ message
broker. Afterwards, I also had to set up a little monitoring infrastructure with Cacti.

Real coding has only represented a very little part of my time : I spent the biggest part of it
discussing the more abstract side of the work, learning about the tools, helping others
getting in touch with them, to run the system and to test it.

Besides the many interesting tools and knowledge I learned about, it was the first time I
participated in such a project and worked in an environment of this scale, and I am happy
to see that I appreciated this too.

Those two months have been a very good experience and I really enjoyed my stay at
CERN as an OpenLab student.

Nagios - ActiveMQ Binding

p. 3 / 10

10 Links

Project-related

• SVN currently holding the new data : https://svnweb.cern.ch/cern/wsvn/nagActMQ
• Twiki page about the project : https://twiki.cern.ch/twiki/bin/view/DefaultWeb/

WebHome?topic=LCG.UseLocalActiveMQForMessaging
• The messaging systems namespace : https://twiki.cern.ch/twiki/bin/view/EGEE/

MsgNamespace
• JMX Query Tool : JMXQueryTool < LCG < TWiki
• Configuration Details : NagiosActiveMQConfiguration < LCG < TWiki

Bibliography

• Grid-monitoring SVN : http://www.sysadmin.hep.ac.uk/svn/grid-monitoring/
• Fuse : http://fusesource.com/products/enterprise-activemq/
• ActiveMQ Documentation : http://activemq.apache.org/
• Camel Documentation : http://camel.apache.org/
• Nagios Documentation : http://nagios.sourceforge.net/docs/3_0/
• Cacti - monitoring software : http://www.cacti.net/
• Jmx4Perl - get informations about JMX Mbeans on a server : http://search.cpan.org/

~roland/jmx4perl/
• STOMP - simple messaging protocol : http://stomp.codehaus.org/
• Net-Stomp - Perl module implementing STOMP : http://search.cpan.org/~lbrocard/

Net-Stomp-0.34/

Nagios - ActiveMQ Binding

p. 12 / 12

https://svnweb.cern.ch/cern/wsvn/nagActMQ
https://svnweb.cern.ch/cern/wsvn/nagActMQ
https://twiki.cern.ch/twiki/bin/view/DefaultWeb/WebHome?topic=LCG.UseLocalActiveMQForMessaging
https://twiki.cern.ch/twiki/bin/view/DefaultWeb/WebHome?topic=LCG.UseLocalActiveMQForMessaging
https://twiki.cern.ch/twiki/bin/view/DefaultWeb/WebHome?topic=LCG.UseLocalActiveMQForMessaging
https://twiki.cern.ch/twiki/bin/view/DefaultWeb/WebHome?topic=LCG.UseLocalActiveMQForMessaging
https://twiki.cern.ch/twiki/bin/view/EGEE/MsgNamespace
https://twiki.cern.ch/twiki/bin/view/EGEE/MsgNamespace
https://twiki.cern.ch/twiki/bin/view/EGEE/MsgNamespace
https://twiki.cern.ch/twiki/bin/view/EGEE/MsgNamespace
https://twiki.cern.ch/twiki/bin/view/LCG/JMXQueryTool
https://twiki.cern.ch/twiki/bin/view/LCG/JMXQueryTool
https://twiki.cern.ch/twiki/bin/save/LCG/NagiosActiveMQConfiguration
https://twiki.cern.ch/twiki/bin/save/LCG/NagiosActiveMQConfiguration
http://livepage.apple.com/
http://livepage.apple.com/
http://fusesource.com/products/enterprise-activemq/
http://fusesource.com/products/enterprise-activemq/
http://activemq.apache.org
http://activemq.apache.org
http://camel.apache.org
http://camel.apache.org
http://nagios.sourceforge.net/docs/3_0/
http://nagios.sourceforge.net/docs/3_0/
http://livepage.apple.com/
http://livepage.apple.com/
http://search.cpan.org/~roland/jmx4perl/
http://search.cpan.org/~roland/jmx4perl/
http://search.cpan.org/~roland/jmx4perl/
http://search.cpan.org/~roland/jmx4perl/
http://stomp.codehaus.org
http://stomp.codehaus.org
http://search.cpan.org/~lbrocard/Net-Stomp-0.34/
http://search.cpan.org/~lbrocard/Net-Stomp-0.34/
http://search.cpan.org/~lbrocard/Net-Stomp-0.34/
http://search.cpan.org/~lbrocard/Net-Stomp-0.34/

