
Intel(R) Array Building Blocks for Linux*
OS

User's Guide

Document Number: 324171-002US

Legal Information

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR
DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on
the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be
obtained by calling 1-800-548-4725, or go to

http://www.intel.com/design/literature.htm

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor
family, not across different processor families. See http://www.intel.com/products/processor_number for details.

This document contains information on products in the design phase of development.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Inside, Centrino logo, Core Inside, FlashFile, i960,
InstantIP, Intel, Intel logo, Intel386, Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Core, Intel Inside, Intel Inside
logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel
SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive,
PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon
Inside are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and other countries.

Copyright © 2010, Intel Corporation. All rights reserved.

iii

iv

Intel(R) Array Building Blocks for Linux* OS User's Guide

Contents
Legal Information ..iii
What's New...9
Getting Support...11
Notational Conventions..13

Displaying Pseudocode...13

Chapter 1: Getting Started with Intel® Array Building Blocks Software
Intel® Array Building Blocks Basics...15

Intel® Array Building Blocks Usage...15
Data Types...16
Safety...16
Determinism..16

Some Definitions...16
Steps to Get Started..16

Checking Your Installation..17
Setting Environment Variables...17
Writing Programs Using Intel® Array Building Blocks...............................17

Chapter 2: Intel® Array Building Blocks Package Structure
High-Level Directory Structure..19
Contents of the Documentation Directory..20

Chapter 3: Intel® Array Building Blocks Sample Code
Using Tutorials..21

About Tutorials..21
Building and Running Tutorials..21

Using Sample Applications..22
About Sample Applications..22
Building and Running Sample Applications..22
Understanding Sample Performance...23
Sample Browser..24

Chapter 4: Configuring Your Development Environment

5

Creating an Intel® Array Building Blocks Project on Linux* OS..........................33
Debugger Integration...34

GNU Debugger Integration...34

Chapter 5: Programming with Intel® Array Building Blocks
Writing Simple Functions Using Scalars...37

Scalar Types...37
Writing and Calling Functions..39
Control Flow...40
Complex Numbers and Small Arrays..41

Adding Parallelism with Containers...42
Using Dense Containers...43
Binding and Accessing Dense Container Data..44
Dense Container Operations..46

Rearranging Dense Containers..47
Gathering and Scattering...48
Mask Operations...48
Filling Dense Containers with Patterns..49

Nested Containers...49
Nested Container Operations...49

Creating Nested Containers from Dense Containers.......................49
Rearranging Nested Containers...50

Reductions and Scans..51
Adding Parallelism Using map()...51

Using the map() Function...52
User-defined Types..53

Overview of User-defined Type Support..53
Rules for User-defined Types...55
Declaring Functions on User-defined Types...55

Specializing Computations with Closures...55
Using Closures with arbb::call()..56
Closure Capture..57
Run-time Specialization Using Closure Capture......................................57
Closure Type Safety and Auto Closures...58

Error Handling...59
Run-time Exceptions..59

Chapter 6: Porting C Code to Intel® Array Building Blocks
Dot Product..61
Black-Scholes..61
Computing Pi..62

6

Intel(R) Array Building Blocks for Linux* OS User's Guide

Binomial Tree for Options Pricing...63
Monte Carlo Poisson Solver...64
General Convolution...66
Image Convolution...67

Appendix A: Environment Variables

7

Contents

8

Intel(R) Array Building Blocks for Linux* OS User's Guide

What's New
The User's Guide provides a quick guide for the Intel® Array Building Blocks software for all supported architectures
on the Linux* OS.

This User's Guide documents Intel® Array Building Blocks 1.0 Beta 1 release.

9

10

Intel(R) Array Building Blocks for Linux* OS User's Guide

Getting Support
Intel provides a support web site that contains a rich repository of self-help information, including getting started
tips, known product issues, product errata, license information, and more (visit
http://www.intel.com/software/products/support/).

Registering your product entitles you to one-year technical support and product updates through Intel(R) Premier
Support. Intel Premier Support is an interactive issue management and communication web site providing the
following services:

• Submit issues and review their status.

• Download product updates.

To register your product, or contact Intel, or seek product support, visit

http://www.intel.com/software/products/support/

Intel® Array Building Blocks software provides a product web site that offers timely and comprehensive product
information, including product features, white papers, and technical articles. For the latest information, see
http://www.intel.com/software/products/.

11

12

Intel(R) Array Building Blocks for Linux* OS User's Guide

Notational Conventions
The document uses the following font conventions and symbols:

Table 1-1 Notational conventions

Italic is used for emphasis and also indicates document names in body text,
for example: see Intel® Array Building Blocks Application Programming
Interface Reference Manual

Italic

Indicates filenames, directory names, and paths, for example:Monospace lowercase

\tools, build_run.bat

Indicates system variables, for example, JIT_OPTIONSUPPERCASE MONOSPACE

Indicates a parameter in discussions, such as function parameters, for
example, lda; makefile parameters, for example, functions_list; and
so forth.

Monospace italic

When enclosed in angle brackets, indicates a placeholder for an identifier,
an expression, a string, a symbol, or a value: <installation directory>.

Square brackets indicate that the items enclosed in brackets are optional.[items]

Braces indicate that only one of the items listed between braces can be
selected. A vertical bar (|) separates the items

{ item | item }

Displaying Pseudocode
In this guide the types and operators are provided using C++ syntax, but the semantics of these operators are
illustrated using pseudo-code like conventions. In particular, the curly brackets and ordered values, which are
separated by commas, denote both the extent and the nesting of a vector, as follows:

 {a, b, c, ...}, {{1, 1} {} {0, 1, 2}}

Pseudocode is printed on the grey background (above). The syntax in such cases may disobey C/C++ syntactic
conventions and specifications.

Actual code or prototypes are printed on no background as follows:

i32 aVariable = 2;

Matrix notation is occasionally used in explaining the structure of a vector. For example:

13

14

Intel(R) Array Building Blocks for Linux* OS User's Guide

1Getting Started with Intel® Array
Building Blocks Software

This chapter provides basic information about Intel® Array Building Blocks and how to confirm installation of the
product.

Intel® Array Building Blocks Basics
The Intel® Array Building Blocks (Intel® ArBB) software is a data-parallel programming environment designed to
effectively utilize the power of existing and upcoming throughput-oriented features on modern processor
architectures, including Intel's multi-core and many-core platforms. Intel ArBB provides a C++ library interface
that enables you to continue to write code using standard C++, and works with tools such as standards-conformant
C++ compilers

Intel® Array Building Blocks Usage

You can focus your use of Intel® Array Building Blocks (Intel® ArBB) software on those portions of your C/C++
code that have the most parallelism potential. Intel ArBB supports compos ability through dynamic composition
and optimization of its operators. For example, you can spread the Intel ArBB code across nested functions that
span multiple libraries. Intel ArBB provides a safer parallel programming environment by isolating its data objects
from the rest of the C/C++ program and by restricting conflicting concurrent accesses to shared objects through
structured primitives. This eliminates the need for low-level constructs like locks and prevents data races.

The Intel ArBB can be described at several levels of abstraction:

Programming model

The Intel ArBB software allows you to express data parallelism with sequential semantics by expressing operations
at the aggregate data collection level. The model provides for data isolation between primitive and function
invocations to ensure race-free parallel execution. Execution of programs written using Intel ArBB are deterministic
(subject to the limited precision of computer arithmetic).

Language

The Intel ArBB software mimics C/C++'s control flow as well as adding new types and operators. While these
features give the developer an expressive programming environment, these additions are supported solely
through the use of header files and a runtime library using only standard C++ capabilities. Because of this, Intel
ArBB usage co-exists with C/C++ code and only specific portions of your program need be rewritten to utilize
parallel features of the underlying system in the Intel ArBB software.

Application Programming Interface

The Intel ArBB software introduces new types using C++'s type system. It introduces new operators using
operator overloading and library calls. You can use standard C++ compilers to compile Intel ArBB programs.
The entry points to data parallel functions are call and map functions, which express semantics as aggregate
(vector-oriented) and element-wise (scalar) operations, respectively, on data collections.

15

High Performance Virtual Machine

The Intel ArBB high-level interfaces and its dynamic compiler enable improving performance without having to
consider the details of the underlying system. The Intel ArBB virtual machine transforms high-level code into
optimized and parallelized machine code for the target architecture. From the high-level code point of view, the
degree of parallelism supported with threads, vectors, the ISA, the memory model, and the cache sizes are all
hidden, making code more portable and easier to write. The dynamic compiler retargets Intel ArBB functions for
the target architecture and caches it for reuse (to avoid further compilation) on subsequent invocations.

Data Types

Intel® Array Building Blocks software provides a rich set of data types for representing your data collections
(aggregations of data, like images, matrices, and arrays). Fundamental elements of these data types are the
dense and nested containers, which are collections to which data-parallel operators may be applied.

Safety

Intel® Array Building Blocks (Intel® ArBB) provides safety through isolation and immutable types. Since C/C++
enables unsafe, concurrent write accesses to its objects, Intel ArBB objects are not accessible via C/C++ pointers.
Intel ArBB software operates in a data space that is isolated from the native (C/C++) data space. Explicit operators
are required to move data between native types and vectors. Intel ArBB operators and types only affect the Intel
ArBB data space. This isolation enables allocating vectors from a managed heap. Data races within Intel ArBB
code are prevented through unchangeable types. The semantics of Intel ArBB operators are purely functional:
vector objects are passed by value, and each Intel ArBB operator logically returns a new vector object. This
property ensures the safety of parallelism and enables the compiler to aggressively optimize the code.

Determinism

Intel® Array Building Blocks software implements a deterministic parallel programming model, meaning that the
behavior of any program is the same on single-core platforms as it is on multi- or many-core platforms. However,
results may change slightly because of the limited precision of computer arithmetic.

Some Definitions

Here are some definitions of terms that are used throughout the document.

Operator - a function that is provided by the Intel® Array Building Blocks (Intel® ArBB) API. Element-wise,
collective, permutation operators operate on Intel ArBB types.

Function - a user-defined function, either invoked natively or with the special operators call or map.

Facility - a helper function that is provided by the Intel ArBB API. Vector facilities such as binding constructors
and copy_in/out facilities operate exclusively on Intel ArBB types. System facilities do not necessarily operate
on such types.

Generic prototype - generic form of operators and functions.

Native - refers to C/C++ types, C/C++ data and name space, and code compiled by the C/C++ compiler.

Steps to Get Started
This section describes the steps you must do to start with Intel® Array Building Blocks (Intel® ArBB).

16

1 Intel(R) Array Building Blocks for Linux* OS User's Guide

Checking Your Installation

After installing the Intel® Array Building Blocks (Intel® ArBB) software, verify that the software is properly installed
and configured.

Check that the directory you choose for the installation is created: <installation
path>/arbb/<release_type>. By default, <installation path> is /opt/intel.

To check the high-level and detailed structure of the Intel ArBB software installation directory, see High-level
Directory Structure.

Setting Environment Variables

You can use the shell script file set_env.sh (for bash), or set_env.csh (for csh) to set LIB, INCLUDE,
LD_LIBRARY_PATH and CPATH environment variables for Intel® Array Building Blocks (Intel® ArBB) software on
the specified architecture. To do this, run set_env.sh arg (set_env.csh arg).

arg specifies the architecture:

arg= ia32 for the IA-32 architecture;

arg= intel64 for the Intel 64 architecture.

You can set the level of optimization by setting the environment variable ARBB_OPT_LEVEL.

O0 enables no runtime optimizations, and uses interpretations. O2 enables vectorization. O3 enables vectorization
and thread parallelization.

The default value is O2.

Writing Programs Using Intel® Array Building Blocks

This topic explains the basic steps way for writing a very simple Intel® Array Building Blocks (Intel® ArBB) program.

1. Include the Intel ArBB library header file arbb.hpp.

#include <arbb.hpp>

2. Add the following statement at the front of your source code:

using namespace arbb;

3. Move code into a Intel ArBB function by adding these lines before and after the code section;

void foo(dense<T> in, dense<T>& out) {

<code section>

}

4. Bind vectors so that they to take values from their C++ counterparts using the binding constructors:

dense<f32> in;

bind(in, inPtr, length);

dense<f32> out;

bind(out, outPtr, length);

17

Getting Started with Intel® Array Building Blocks Software 1

5. Invoke the Intel ArBB function using a call:

call(foo)(in, out);

6. Ensure that the call has completed:

out.read_only_range();

Refer to the Intel® Array Building Blocks Application Programming Interface Reference Manual to learn more
about developing the Intel ArBB applications. Also refer to the section "Porting C Code to Intel® Array Building
Blocks of this guide.

18

1 Intel(R) Array Building Blocks for Linux* OS User's Guide

2Intel® Array Building Blocks
Package Structure

This chapter discusses the structure of the Intel® Array Building Blocks software after installation as well as the
application libraries supplied.

High-Level Directory Structure
The following table shows the high-level directory structure of Intel® Array Building Blocks (Intel® ArBB) package
after installation.

High-Level Directory Structure

DescriptionDirectory

installation product directory<install_directory>

Intel ArBB related documents/Documentation

header files/include

library files/lib

sample applications/samples

script files/tools

The <install_directory> is the installation directory.

The include directory contains all header files that are needed for the Intel ArBB application development.
Typically you must include arbb.hpp in your Intel ArBB application source code.

The lib directory contains all library files that the you need to link to. For example, /ia32/libarbbd.so - the
dynamic library for the debug version on Linux* OS.

The samples directory contains domain-specific workloads developed using the Intel ArBB technology. Refer to
the section Intel® Array Building Blocks Sample Code.

The tools directory contains different tools, for example, batch file to set environment variables.

The Documentation directory contains the Intel ArBB related documents (refer to the section "Contents of the
Documentation Directory").

19

Contents of the Documentation Directory
The following table shows the content of the /Documentation directory in the Intel® Array Building Blocks (Intel®
ArBB) software installation directory.

Contents of the /Documentation Directory

NotesDescriptionFile name

Documentation index. Lists the
principal Intel ArBB Technology
documents with appropriate links
to the documents

arbb_documentation.htm

These file can be viewed prior to
the product installation

General overview of the product
and information about this release

arbb_release_notes.pdf

Information on package number for
customer support reference

arbb_support.txt

Intel® ArBB license agreement.arbbEULA.txt

20

2 Intel(R) Array Building Blocks for Linux* OS User's Guide

3Intel® Array Building Blocks
Sample Code

Sample applications and tutorials are available for Intel® Array Building Blocks (Intel® ArBB) technology. These
can help you start your application development. The tutorials explain the basics of the Intel ArBB. The samples
illustrate Intel ArBB implementations of specific kernels. You can use them for evaluating performance in particular
domains.

Samples and tutorials offer direct methods to determine:

• Whether the software is working on your system
• How Intel ArBB language constructs (such as operators, functions, collectives, facilities and so on) relate to

analogous C++ constructs
• What options are available for implementing Intel ArBB functions (such as large-vector arithmetic versus

pre-element scalar arithmetic)
• How to optimize Intel ArBB functions to build performant and scalable applications (for instance, alignment

requirements for memory allocation)
• How the performance and precision of Intel ArBB implementations compare to those of analogous C++

applications

Using Tutorials
This section provides general information on the Intel® Array Building Blocks tutorials and provides general
instructions on how to use them.

About Tutorials

Tutorials provide step-by-step instructions on how to implement common algorithms, for example convolution
or dot product, using features of Intel® Array Building Blocks.

Use this link at http://software.intel.com/en-us/articles/arbb-tutorial/ to browse through available tutorials and
download the tutorials that you would like to work with further.

Building and Running Tutorials

After installing the Intel® Array Building Blocks (Intel® ArBB) product, use the following steps to build and run
the tutorials:

1. Create a directory in which to install the tutorials. In the following this directory is referred as
<tutorials-dir>.

Download and extract the Intel ArBB tutorials to this directory.

2. Go to a tutorial directory such as <tutorial-dir>/tutorials/tut0.

21

 cd ~/<tutorial-dir>/tutorials/tut0

3. Edit the Makefile to select a C++ compiler:

 CXX=g++

4. Optionally override the default target architecture. For example, you can specify IA-32 on a 64-bit operating
system. Valid values for the Intel architecture are ia32 and intel64:

 export ARBB_IA=ia32

5. Set the ARBB_ROOT environment variable to point to the root directory of the Intel ArBB installation, and
rebuild the tutorial:

 export ARBB_ROOT=<install-dir>

 make clean

 make

6. Set the LD_LIBRARY_PATH and run the tutorial:

 LD_LIBRARY_PATH=$ARBB_ROOT/lib/$ARBB_IA ./tut0

As an alternative to step 4, use the following shell script to run a tutorial that is already compiled:

 cd ~/<tutorial-dir>/tutorials/

 ./run.sh tut0

Using Sample Applications
This section provides general information on the Intel® Array Building Blocks sample applications and provides
general instructions on how to use them.

About Sample Applications

Sample applications illustrate the Intel® Array Building Blocks (Intel® ArBB) implementation of kernels commonly
used in specific areas, including financial services, graphics, image processing, medical imaging, seismic
reconstruction, and others.

By default, samples are installed to the <install-dir>/samples directory. All samples are grouped into
categories corresponding to their application areas. The misc category includes samples applicable to a variety
of different areas. It also includes the spec-samples project that demonstrates the usage of individual Intel
ArBB language constructs, complementing the Intel® Array Building Blocks Application Programming Interface
Reference Manual.

Each sample compares the performance of serial and Intel ArBB implementations of a given kernel operation.
The difference in execution time is measured and can be taken as a rough indication of the speedup that you
can expect for comparable patterns of data transfer and computation. Each sample also includes validation to
ensure that the serial baselines and parallel Intel ArBB implementations are producing similar results. For
floating-point computations, the comparisons are made within a specified tolerance.

Building and Running Sample Applications

To build and run sample applications:

Go to the <install-dir>/tools directory and run one of the following shell scripts:

22

3 Intel(R) Array Building Blocks for Linux* OS User's Guide

• build_run-icc.sh - automatically builds and runs the sample applications using the Intel® C++ Compiler

• build_run-gcc.sh - automatically builds and runs the sample applications using the GNU Compiler Collection
(GCC)

You can inspect the shell scripts to determine how to build individual samples.

Understanding Sample Performance

Most samples run in a benchmarking mode that compares the performance of Intel® Array Building Blocks (Intel®
ArBB) implementations against a reference serial implementation. For example, the output of the 3D-dilate
sample looks like the following:

Running 3D-dilate.exe

Speed UpTime (s)Version
1.00027.037554C
21.6441.249182ArBB1

It is important to treat these numbers only as a rough indication of the performance benefits of Intel ArBB. The
following information can help to interpret the relative speedup of Intel ArBB over the reference implementation:

Reference Implementation: The baseline is a serial implementation using 'C' that produces the same results
as the Intel ArBB implementation. However:

• By default, the baseline uses a single core and does not explicitly take advantage of SIMD instruction sets.

To tune the baseline implementation (for example, to isolate other performance advantages of the Intel ArBB
implementation), use an auto-vectorizing compiler. For example, if we compile the 3D-dilate sample with the
Intel compiler with appropriate options to autovectorize the baseline, we obtain the following:

Running 3D-dilate.exe

Speed UpTime (s)Version

1.0008.319997C

7.2551.146859ArBB1

• Slight algorithmic variations can exist between the serial and Intel ArBB implementations. For example, the
logic to handle boundary conditions can vary.

• Of course the speedup also varies with the processor generation and instruction set supported, number of
cores, number of processors, size of the cache, speed of the memory system, operating system activity, and
other factors.

Optimization Level: By default, samples run at the default optimization level of O2. At O2, the code emission
is fully optimized, but Intel ArBB applications only use a single core. To use the sample applications as a
parallelization benchmark, set the environment variable ARBB_OPT_LEVEL=O3. By default at O3, Intel ArBB
applications are vectorized and use all available cores. Set the environment variable ARBB_NUM_CORES to a
specific number less than the number of physical cores to reserve cores for other concurrent processing.

Workload: You can choose between the following pre-processor options when building samples. In all cases,
the Intel ArBB and reference implementations use the same problem size and time the same number of iterations:

• SAMPLE_DATA_SET: By default, a single repetition is timed with a significant (that is non-trivial) problem size.

• BIG_DATA_SET: Multiple repetitions are timed with a significant (that is non-trivial) problem size.

The reported times are averages that reduce the impact of operating system activity on the benchmark output.

23

Intel® Array Building Blocks Sample Code 3

• PERF_REGRESSION or SMALL_DATA_SET: Multiple repetitions are timed with a medium problem size.

1. Failures related to the accuracy of single-precision computation occur less often at these problem sizes.

2. Large variations in performance are typical when competing tasks such as operating system services are
run concurrently at O3 level.

3. This option provides a fast way to determine if a sample is working correctly

NOTE. In some cases where workloads are time-consuming at large problem sizes, a single
repetition is always performed. Also, repetitions (necessary to get an accurate measurement of
average performance) increase the wall-clock time to execute the operation.

Throughput: The workloads have not all been tuned to illustrate optimal throughput. For instance, there are
cases where implementations include a large number of calls to Intel ArBB functions with small workloads. While
these workloads can often be re-factored to improve throughput, the sample implementations as given do provide
the opportunity to compare the static overheads of invoking Intel ArBB functions.

Sample Browser

The table below lists the available samples, with short descriptions. The column Category corresponds to the
subfolder of the <install-dir>/samples directory where each Sample subfolder is located.

In addition, characterizations of each algorithm and the implementation of algorithms through Intel® Array
Building Blocks (Intel® ArBB) language constructs are provided to help you find relevant samples:

• The column Description explains the sample operation using terms specific to industry verticals. For example,
option pricers are used in computational finance to price options, derivatives and other financial instruments.

• The column Algorithm provides information about the parallel patterns (for example, stream or reduction)
and the arithmetic intensity of the kernels (the relative balance of data transfer and computation). This
information can assist you in finding Intel ArBB samples with similar characteristics as the bottlenecks in your
applications.

• The column Implementations compares the variations of the Intel ArBB kernels provided in the each sample
project. In some cases, when variations are present for a given algorithm, they illustrate techniques to optimize
that algorithm for different problem sizes. In other cases, the variations just illustrate different strategies for
implementing the same algorithms using Intel ArBB.

For example, many algorithms can be implemented using either map or call operators as it is possible to
express the math using either scalar elemental functions or large-vector arithmetic. Large-vector arithmetic
is implemented in the body of an Intel ArBB function using operations on dense and nested containers. The
same algorithm can usually be implemented using element-wise arithmetic using Intel ArBB scalars, then
replicating this function over a collection using a map.

NOTE. The terms in bold text refer here to Intel ArBB language constructs.

24

3 Intel(R) Array Building Blocks for Linux* OS User's Guide

ImplementationAlgorithmDescriptionSample
Category: finance

(1) A map to parallelize over
pricing multiple options. Uses
a series of _for loops for each

Stream of option pricing
evaluations with high arithmetic
intensity (exp, sqrt).

Numerical lattice for
pricing European
options.

binominal-tree

time step and calls replace()
on elements of local
(temporary) containers as well
as containers for output of the
option prices.

(1) Uses the call operator to
inline an Intel ArBB function
whose outer loop parallelizes

Data-parallel random number
generation using scan. Option
stream with arithmetic intensity
(ln, exp, sqrt).

Analytical method
for pricing European
options. Optionally
evaluates or
approximates
polynomials.

black-scholes

over options. Illustrates the use
of select to choose between
two terms during polynomial
evaluation.

(1) Uses the call operator to
invoke an Intel ArBB function
whose outer loop parallelizes

Data-parallel random number
generation using scan. Option
stream with arithmetic intensity
(exp). 1D and 2D accumulation
(reductions).

Stochastic method
for computing
financial options
using the
Blackscholes
formula given

monte-carlo

over options. Generates a
normally distributed random
sequence using a

randomly varying transformation of a uniform
prices. Can random sequence. Uses a
optionally generate nested _for loop over prices to
the sequence of perform 1D vector arithmetic,

and uses add_reduce and
replace to accumulate a result.

random numbers
using a
multiplicative
congruential
generator (MCG).

(2) Uses reshape and
repeat_col to perform an
equivalent 2D implementation.
Illustrates the use of
add_reduce for accumulation.

(1) Uses the call operator to
generate a large vector of
scalar random numbers.

Data-parallel random number
generation using scan. Kernel
with nested loops and high

Monte-Carlo method
to solve Poisson
functions (MCP

poisson-solver

Followed by a map over pointsarithmetic intensity (sin, cos).solver). Uses a
illustrating nested _for andMinimum distance computationsequence of random
_while loops for a randomusing a series of thresholds innumbers from a

linear congruential
generator (LCG).

walk. The inner loop is a series
of _if statements to compute a
minimum distance. (2)

the inner loop. Unbalanced load
where the number of iterations
depends on random input.

Equivalent implementation
using map to perform scalar
arithmetic.

25

Intel® Array Building Blocks Sample Code 3

ImplementationAlgorithmDescriptionSample

(MCG) Uses the call operator
to invoke native code stubs
from within an Intel ArBB

Data-parallel random number
generation using scan.

Scan collectives, bitwise
operations

Code that can be
in-lined to generate
a normally
distributed random
sequence using the
following
algorithms:

randomlib

function. The actual native
implementation can be switched
at link time.

(General) Use of mul_scan to
generate indices. Illustrates the
use of rotate and select on

• Linear
Congruential
Generator (LCG) seeds. Illustrates the use of a

bitwise & operation (a mask) to
simulate a vector modulus
operation.

• Multiplicative
Congruential
Generator (MCG)

• Combined
multiple
recursive
generator with
two components
of order 3 (MRG)

• Generalized
feedback shift
register
generator
(R250)

Mersenne twister
(MT)

Category: graphics

(1) Uses the call operator over
a 2D pixel array. Within the call
body, a _for loop over the

For each triangle in the scene,
compute the intersection and
distance to triangle. Compute

A kernel used to
create a realistic
visualization of a

raytracing1

height of the pixel array isthe minimum distance and
shade the triangle closest to the
camera.

scene when tracing
rays from a camera
through an image

performed. For each row, a
map over 1D lines of pixels is

plane to a light performed. Illustrates the useA simplified lighting calculation
is given by a proportional sum
of diffuse, specular and ambient
light.

source. For each
pixel in a 2D array,
the kernel
determines the

of index to generate an
arithmetic sequence and
replace_row to populate rows
of the 2D outputs. Uses at to
extract a one-component array
from an N-component array.

The ray tracing algorithm is
parameterized over
1-component or 2-component
inputs and outputs.

closest ray-triangle
intersection and
evaluates the pixel
shade using a
lighting calculation.

(2) An equivalent map over a
2D pixel array is performed.
Illustrates the use of index to
generate a 2D sequence.This implementation

is brute-force and
does not use an Note: The bulk of the

implementation differs only in
the use of scalars versus

26

3 Intel(R) Array Building Blocks for Linux* OS User's Guide

ImplementationAlgorithmDescriptionSample
2-tuples for positions and
directions. Therefore, ray
tracing is parameterized over
different data types.

accelerator: every
ray is compared to
every triangle.

(3) A variation on (2) using
3-component tuples and large
vectors of 3-component tuples
instead of separate variables
(i.e. for RGB and XYZ).
Illustrates the use of get and
set for components of a tuple

(1-3) See (1), (2) and (3) for
raytracing1.

A variation on raytracing1
where the triangles are indexed
by a uniform grid accelerator to

A variation on
raytracing1 where
ray-triangle

raytracing2

limit the number of triangle-rayintersection is
NOTE. Uses _break to
perform an early exit from a
_for loop or a _while loop.

tests that are required.. For
each cell in a 3D grid, an initial
test is performed to determine
if the ray intersects the cell.
Ray-triangle intersection is
performed only when rays
intersect grid cells.

limited to triangles
in grid cells that
intersect with rays.
In other words, a
uniform spatial
partition is used for
acceleration.

Category: image processing

(1) Uses the call operator to
implement separable
convolution using large vector

A local gather over a fixed
neighborhood around each pixel
of a 2D image.

Convolution of a 2D
image with a
discrete Gaussian
function.

convolve

math. Calls shift to perform
vector arithmetic on neighbors.
Optionally performs an
averaging filter.

1D convolution along X and Y
axis of a pre-computed 2D
stencil of coefficients.

Clamps output to 255 to
prevent saturation of the 8-bit
unsigned image data.

(2) A variation on (1) with
manual unrolling rather than
_for loops for separable
convolution. Only works with a
5x5 pixel convolution stencil.

Optionally runs with convolution
stencils of 5x5 or 9x9 pixels.

(3) A map operation using
nested _for loops to perform
convolution. Calls num_rows
on the 2D stencil to operate on
square kernels of any size.

(4) This tuned version casts the
unsigned image data to
single-precision float. Next, a
_for loop is performed over
64-pixel wide strips of the
image. For each block, nested
for loops are used to unroll the
convolution. Uses section
andreplace to operate on a

27

Intel® Array Building Blocks Sample Code 3

ImplementationAlgorithmDescriptionSample
64-pixel wide strip of the
image. This is followed by a
similar loop to process the
portion of the image that does
not fit into strips of 64 pixels.

(1) Two _for loops to perform
separable convolution using
large vector math. Uses

Similar to convolve. Uses
different stencil sizes and does
not assume odd stencil sizes.

Convolution of a 2D
image with a
discrete Gaussian
function.

gauss-convolve

shift_row and shift_col for
the 1D convolution along X and
Y axis.

(2) Equivalent implementation
using map to perform scalar
arithmetic. Illustrates in-lining
of multiple C++ routines (one
for each axis) into a single Intel
ArBB function.

(1) Uses call to invoke an Intel
ArBB function that in turn
inlines separate functions to

A gather over a fixed
neighborhood around each pixel
of a 2D image. Separately

An edge detection
filter for a 2D image
that uses the

sobel

compute the gradient in X andcomputes the gradient alonggradient (rate of
change) of image
intensities.

Y using large vector arithmetic.
Calls shift to perform vector
arithmetic on neighbors.

the X and Y axes. This variation
on a Sobel filter outputs the
largest of the two gradients
(with clamping to avoid
saturation of 8-bpp image
data).

(2) Equivalent implementation
using map to perform scalar
arithmetic.

Category: medical

(1) Three nested _for loops are
used to iterate through the
mask. A call to create makes

Loops over a neighborhood
defined by a 3D binary mask
(structuring element). For each

A morphological
operator for dilation
applied to 3D
grayscale images.

3D-dilate

a local buffer to store
maximums. Calls shift to

neighbor corresponding to a
non-zero mask entry, the

perform vector arithmetic onimage is updated with the
neighbors. Calls num_cols,largest difference between the
num_rows and num_pages
to operate on a mask of
arbitrary size.

neighbor and a height field
matrix. Features are dilated
when voxels neighboring the
structuring element are
incorporated (assigned similar
intensities). The height matrix
provides intensities for non-flat
structuring elements.

Similar to 3D-dilate. Uses
min_reduce.

Similar to 3D-dilate, except that
the smallest difference is
output.

A morphological
operator for erosion
applied to 3D
grayscale images.

3D-Erode

28

3 Intel(R) Array Building Blocks for Linux* OS User's Guide

ImplementationAlgorithmDescriptionSample

Similar to guass-convolve. Uses
shift_page in addition to
shift_row and shift_col to
handle the Z axis.

Similar to guass-convolve,
except that a 3D convolution
stencil is applied to 3D image
data.

Convolution of a 3D
image with a
discrete Gaussian
function.

3D-gauss-convolve

(1) Uses the call operator to
parallelize over pixels in the 2D
output image. Uses a _for loop

A spatially-coherent gather
along projections (rays)
through each pixel of a 2D
image.

A technique for
image
reconstruction used
with inputs from

back_projection

in the call body to iterate
computed axial
tomography (CAT)
scans.

through projection angles. Uses
a table lookup to compute the
sin and cos of each projection
angle. Calls floor and ceiling

Applies the inverse Radon
transform to reconstruct a 2D
image given a set of projections
through that image. Uses 1D on large vectors prior tointerpolation to update the interpolation. Uses the +=

operator to integrate
contributions.

output image with the
contribution from the nearest
projections.

(2) A variation on (1) that uses
reshape to create a 2D product
of angles and projections ratherNOTE. A simple scan

geometry is assumed
(radically symmetric 1D
orthographic projections
rather than a helical scan).

than a packed 1D vector.
Within the call body, the
indexing is modified to perform
a 2D gather using a
two-component index.

In addition, it is assumed that
sharpening of sets of input
projections (sinograms) has
already been performed.

Category: misc

(1) Uses a_for loop in a map
operator to iteratively refine the
output. Uses the complex

Iteratively applies a quadratic
polynomial map over complex
numbers and computes it
escape time to compute a
fractal set.

Fractal data set
generation.

mandelbrot

numbers (using std::complex
over Intel ArBB floating-point
types) to perform complex
multiplication and addition.
Calls abs to compute the
complex norm, and uses
_break to exit early when the
hard-coded bounds are
exceeded.

(2) An alternative
implementation using a _for
loop in a call operator. Creates
a large vector that is local to
the Intel ArBB function,
complex and 2D. Performs a
fixed number of iterations, and

29

Intel® Array Building Blocks Sample Code 3

ImplementationAlgorithmDescriptionSample
stops updating the output when
the fractal bounds have been
exceeded (this performs more
work than the version (1) using
an early exit).

(1) The calling code, inputs and
outputs are detailed for
full/partial reductions using

(1) Full and partial collective
operations are performed. The
partial collectives reduce the

Calling code that
details the behavior
of various Intel

spec-samples

add_reduce, as well as
exclusive and inclusive scans
(add_scan and add_iscan).

dimensionality of the input set
rather than returning a single
value. Collective operation is
illustrated using dense and
nested containers.

ArBB operations on
dense and nested
containers. The
operations are
divided into three
categories:

(2) Uses
reshape_nested_lengths to
generate nested vectors from(2) Illustrates the reshaping of

dense containers as nested
containers, flattening of nested

dense vectors based on
segment descriptors. Couples

• Collectives used
for reductions
and scans. this operation with a type cast

using reshape_as. Calls split,
containers, and
split/unsplit/cat operations.

• Facilities for
building and
querying the

unsplit and cat with inputs
and/or outputs that are nested
containers.

Also shows how to extract sizes
of dense containers and nested
segments.

structure of
nested data
containers.

(...2) Calls value, lengths,
flags and offsets to extract
information about nested
containers.

(...2) Illustrates the creation
and initialization of large
vectors and index sets. Also
shows how to section large
vectors and update sections of
large vectors.

• Operations on
dense and
nested
containers,

(...2) Calls create for large
vectors and illustrates the
construction of index sets. Uses
section and replace to operate
on pieces of large vectors.

(3) Permutes data using
swizzle, pack, shift, rotate, sort
and shuffle operations. Many of
these operations have inverses,
such as pack/unpack.

permutation
operations on
elements or
nested segments
of containers. (3) Performs swizzle, mask,

pack/unpack and scatter
operations on large vectors
using large vectors to specify
the output indices.

(...3) Calls shift, shift_sticky
and rotate with options to
permute dense and nested
containers both left and right.
Note that full segments of
nested containers can be
permuted.

(...3) Calls sort to perform
direct and indirect sorts on
dense containers.

(...3) Calls shuffle/unshuffle
to perform strided
interleave/de-interleave of
dense containers.

30

3 Intel(R) Array Building Blocks for Linux* OS User's Guide

ImplementationAlgorithmDescriptionSample
(...3) Shows how to use repeat
and repeat_row variants to
replicate data in dense
containers.

Category: seismic

(1) Uses the map operator to
perform scalar arithmetic. Uses
relative indices to gather values
of neighbors.

Convolution using a 7x7x7
cross-shaped kernel.

Convolution used in
reverse time
migration (RTM).

3dstencil

(X) Uses the call operator to
implement 1D convolution on
the x-axis between a seismic

Separable 2D convolution using
a cross-shaped kernel.

1D and 2D
convolution for a
seismic image.

convolution

trace and a large array of
weights. Calls shift to access
neighbors within a _for loop to
perform convolution with an
arbitrarily sized array of
weights. Uses create to
generate a large vector output
of any specified size.

(Y) An equivalent operation on
the Y axis performed on half of
the input data set.

(2D) Uses the call operator to
perform a 2D convolution with
a cross-shaped stencil of fixed
size. Uses shift_sticky to
perform vector arithmetic with
neighbors using a zero-flux
assumption for out-of-bounds
accesses (clamped to the
nearest boundary value). Uses
a stride of 2 on the x-axis when
gathering neighbors.

(1) Uses the call operator to
implement migration with large
vector arithmetic. Uses create

Accumulates the contributions
of each seismic trace to a
sub-surface reconstruction.

Generic Kirchhoff
migration assuming
constant velocity of

kirchhoff

to allocate a large vectorUses a constant velocity modelseismic waves
through a
sub-surface.

output. Constructs sets of
indices<> with the
user-specified resolution. Uses

where the time from source to
receiver is proportional to the
distance between the source

a _for loop to parallelize overand receiver. Uses the equation
circle centers. Uses a select
statement to perform a
boundary check.

of a circle to determine the
possible reflection points. Uses
correlation between multiple
source-receiver pairs to identify
the location of the reflecting
sub-surface.

(2) A 2D variation on (1) where
the output and index sets are
2D X-Z datasets. Uses

31

Intel® Array Building Blocks Sample Code 3

ImplementationAlgorithmDescriptionSample
repeat_col and repeat_row
to generate the 2D index sets.
Uses create to initialize a 2D
large vector containing
two-component tuples used to
perform a gather. Specifically,
the 2-tuples are used to index
the trace data to determine the
appropriate contribution for the
output reconstruction.

32

3 Intel(R) Array Building Blocks for Linux* OS User's Guide

4Configuring Your Development
Environment

This chapter explains how to configure your development environment for use with the Intel® Array Building
Blocks software.

Creating an Intel® Array Building Blocks Project on Linux* OS
This section describes how to create and set up manually the project on Linux* OS.

You must use the common build rule file include/makefile.inc. The Intel® Array Building Blocks (Intel® ArBB)
software supports different compilers. See their list in the Release Notes documents. You can set the default
compiler in samples/common/makefile.inc. icc denotes the Intel C++ Compiler, gcc - GNU C/C++ Compiler.
For example,

 ifndef compiler
 export compiler=gcc
 endif

You can easily build a new makefile for a project by including this common rule file. Please refer to
samples/finance/black-scholes/Makefile.

WKLD_DIR=../../..

VPATH=$(WKLD_DIR)/samples/common

SRCS=bs_c.cpp bs.cpp main.cpp data.cpp util.cpp

include $(WKLD_DIR)/samples/common/makefile.inc

ifneq ($(MOS),win)

C_EXTRA_FLAG = -msse2

endif

WKLD_DIR defines the installation directory of the Intel ArBB package. You must properly set it.

The second line is optional, it defines the location (other than current directory) of the source files included in
this application if.

The sixth line is also optional, and defines extra G++ compilation flags. The common rule file defines the basic
flags. You can append extra flags at the end of this line.

The third line contains the required variable SRCS that defines the list of source files. If the source files are not
in the current directory, you must define the VPATH variable.

The fourth line includes the common rule file. This line is required, too.

In summary, you must define WKLD_DIR and SRCS, and include the file makefile.inc.

33

You can use the command shown below to build the project. The argument following the make command is one
of the target objects, such as all, dbg, opt, and clean . The default target object is all.

make [all | dbg | opt | clean]

Debugger Integration

The debug facilities of Intel® Array Building Blocks (Intel® ArBB) are called debugger integration since there is
no separate debugger needed to debug Intel ArBB code. The debugger integration consists of scripts that help
existing debuggers to work with Intel ArBB code.

The intention of the debugger integration is to show the content of variables in the usual way, and to appear
similar to non-ArBB variables. Without using the Intel ArBB debugger integration opaque types as specified by
the Intel ArBB VM API cannot be inspected, and no actual user data is shown. The debugger integration helps
to format these opaque types.

The scripts enable the following:

• Perform introspection of Intel ArBB scalars and dense containers and visualization of their values

• Provide insight into Intel ArBB opaque types (C++ space)

The debugging of Intel ArBB code requires ARBB_OPT_LEVEL=O0 ("O-zero"), which is immediate, or emulation
mode execution. This mode execution of Intel ArBB provides the following:

• Triggering non-JIT code execution, that is no IR is recorded, and the execution happens in the C++ space

• Capturing and closure creation is not supported in immediate mode

The properties delivered by the immediate mode execution are:

• Common debugger features are working as expected, for example break points

• Control flow can be directly monitored

Debugging in the immediate mode technically implies:

• Execution on the host system, that is independent of the compilation target (remote execution)

• No memory allocation, and no copies are introduced over regular immediate mode execution

Intel ArBB supports GNU Debugger (gdb). Refer to the Release Notes to find out the exact version needed.

GNU Debugger Integration

The requirements of Intel® Array Building Blocks (Intel® ArBB) debugger integration with the GNU debugger
(GDB) are as follows:

• Python script to pretty-print Intel ArBB data objects

• Suitable GDB front-ends, for example, DDD or GNU Emacs

• GNU debugger GDB 7.0, or later

As an example, assuming a GDB session is running where the following code has been executed in the current
scope:

i16 i(16);

boolen b(true);

dense<i32> d1;

34

4 Intel(R) Array Building Blocks for Linux* OS User's Guide

dense(boolean> d2(8);

dense<i32, 2> d3(2, 4);

dense<i32, 3> d4(2, 2, 2);

If you type

print i

the result is:

$1 = 16

If you type

print b

the result is:

$2 = true

If you type

print d1

the result is:

$3 = ArBB dense, uninitialized = {

 [0] uninitialized

}

If you type

print d2

the result is:

$4 = ArBB dense<arbb_boolean, 1> = {

 [0] = container (8) = {false, false, false, false, false, false, false, false)

}

If you type

print d3

the result is:

$5 = ArBB dense<arbb_u32, 2> = {

 [0] = container (2, 4) = {[0] = {0, 0}, [1] = {0, 0}, [2] = {0, 0}, [3] = {0, 0}}

}

If you type

print d4

the result wil be:

$6 = ArBB dense<arbb_u32, 3> = {

 [0] = container (2, 2, 2) = {[0] = {[0] = {0,0}, [1] = {0, 0}}, [1] = {[0] = {0,0}, [1]
= {0, 0}}}

}

35

Configuring Your Development Environment 4

The formatting of the containers above is subject to GDB settings for printing arrays and may not exactly match
the above examples. Among the relevant options are those set by the following GDB commands:

• set print array

• set print array-indexes

• set print elements

• set print pretty

Refer to the GDB documentation for details.

In addition to providing information using the standard print command, you can use a custom command to print
individual elements of a dense variable. The syntax of the command is as follows:

arbb print var[page][row][col]

The number of indexes provided must match the dimensionality of variable. If the dense variable holds an array
or user type, the elements in each sub-container matching the given indexes is printed. Expression evaluation
is not supported. A single variable name must be provided and indexes must be numeric. This command does
not support options to print values in other than base 10.

The GDB integration also provides some level of support for GUI debuggers that are built on top of GDB. For
instance, when you add an Intel ArBB variable to the Expressions window in the Eclipse CDT debugger, the
pretty printed value is shown in the Details field for the variable as follows:

36

4 Intel(R) Array Building Blocks for Linux* OS User's Guide

5Programming with Intel® Array
Building Blocks

Writing Simple Functions Using Scalars
This section introduces scalars, the simplest types available in Intel® Array Building Blocks (Intel® ArBB), and
shows you how to write simple functions to express computations using these types. Functions based purely on
scalars are compiled and optimized by Intel ArBB when passed to the arbb::call() function. However, such
functions do not contain any explicit parallelism because all parallelism in Intel ArBB is based on container types.

See also the following sections in the Intel® Array Building Blocks Application Programming Interface Reference
Manual:

• Scalars

• Function Invocation

• Scalar and Element-wise Functions

• Small Arrays

• Complex Numbers

• Control Flow

See Also
• Adding Parallelism with Containers

Scalar Types

The scalar types provided by Intel® Array Building Blocks (Intel® ArBB) enable declaring variables such as integers,
floating-point numbers, and Boolean values. The scalar types for integers and floating-point numbers correspond
to the C++ primitive types such as int and float, but are processed by the Intel ArBB run-time library.
Computations expressed using these types can therefore be captured and compiled by Intel ArBB.

Like all Intel ArBB types, all scalar types are declared in the arbb namespace.

The table below summarizes the Intel ArBB scalar types. The C/C++ equivalents are listed as "typical" because
C and C++ do not impose exactly how many bits the representation of a given type should have.

Intel ArBB Scalar Types

Typical C/C++ EquivalentDescriptionScalar Type

signed char8-bit signed integeri8

short16-bit signed integeri16

37

Typical C/C++ EquivalentDescriptionScalar Type

int32-bit signed integeri32

long long64-bit signed integeri64

unsigned char8-bit unsigned integeru8

unsigned short16-bit unsigned integeru16

unsigned int32-bit unsigned integeru32

unsigned long long64-bit unsigned integeru64

float32-bit floating-point numberf32

double64- bit floating-point numberf64

boolBoolean (true or false) valueboolean

ssize_t (non-standard)Signed integer large enough to
store indices

isize

size_tUnsigned integer large enough
to store indices

usize

The isize and usize types are used to store values related to the size of a container, such as the size itself or
indices used to look up elements in a container. These types do not have a defined bit-width because their
representation depends on the target architecture. For example, on an architecture supporting 64-bit addresses,
these types are usually 64-bit, but on a 32-bit architecture, they may be 32-bit.

You can declare scalars like any other C++ objects. Upon construction, a scalar is initialized to a zero value of
the appropriate type. You can also construct a scalar by copying its value from another scalar or by initializing
it with a C++ primitive value of an appropriate type:

arbb::i32 foo; // initialized to zero

arbb::i32 bar = foo; // initialized by copy from foo

arbb::i32 baz = 17; // initialized to the value 17

The Intel ArBB scalar types provide many operations, including arithmetic, logical, comparison, transcendental,
and bitwise functions. You can use these operations to express computations on scalars in the same way as on
C++ primitive types. For details of the operations available on scalars, see the Intel® Array Building Blocks
Application Programming Interface Reference Manual.

Unlike C++ primitives such as float variables, Intel ArBB scalars are not values themselves. Instead, scalars
represent values. Use the arbb::value() function to access the value stored in a scalar as a regular C++ type.
This enables Intel ArBB control over the actual storage and computation resulting in a particular scalar. For
example, the computation defining a particular scalar may run asynchronously at the same time as some other
C++ code. Calling arbb::value() on such a scalar ensures that the computation has completed so that the
actual resulting value can be returned.

// Declare some scalars.

arbb::i32 i = 5;

arbb::i32 j = 6;

38

5 Intel(R) Array Building Blocks for Linux* OS User's Guide

// Obtain the value of i.

int i_value = arbb::value(i); // i_value is 5.

// Declare another scalar and perform some computation.

arbb::i32 k;

k = i + j;

int k_value = arbb::value(k); // k_value is 11.

Writing and Calling Functions

For Intel® Array Building Blocks (Intel® ArBB) to optimize code expressed using Intel ArBB types, place such code
in a C++ function and use the arbb::call() function to invoke it. The function must return void, and accept
Intel ArBB type parameters. The parameters can be references or const references, but cannot be pointers. Up
to 35 parameters can be used in such functions.

The following example shows a simple function defined using scalar types and a call to this function using
arbb::call():

#include <iostream>

#include <arbb.hpp>

// Define a function using Intel(R) ArBB types.

void my_function(arbb::f32& result, arbb::f32 a, arbb::f32 b)

{

result = a + b;

}

int main()

{

// Declare some scalar variables.

arbb::f32 x = 1.0f;

arbb::f32 y = 2.0f;

arbb::f32 z;

// Compile and execute the function using Intel(R) Array Building Blocks.

arbb::call(my_function)(z, x, y);

// Print out the value of z after the function execution.

std::cout << “z = “ << value(z) << std::endl;

39

Programming with Intel® Array Building Blocks 5

}

On the first use of a function with arbb::call(), Intel ArBB optimizes and compiles the computations expressed
in the function. Subsequent calls to arbb::call() reuse the compiled code from this first invocation, so they
will not incur any execution overhead.

Within an arbb::call() invocation, you can perform other arbb::call() invocations or call C++ functions
directly. Insert such C++ functions directly into the resulting code.

Do not use arbb::call() on variables declared locally within an arbb::call(). Such variables are placeholders
for the computation to be performed in the code compiled by arbb::call() and therefore do not have a single
corresponding value.

Control Flow

Because scalars represent a value rather than have a value inside of arbb::call(), they cannot be used directly
in places where C++ value types such as float and bool can be used. Therefore those scalars cannot be used
directly in C++ control flow constructs such as if-statements and for-loops. To enable control flow in functions,
Intel® Array Building Blocks (Intel® ArBB) provides a set of control flow constructs corresponding to those used
in C++.

Intel ArBB provides control flow constructs through macros such as _if ,_for and _while. Unlike their C++
counterparts, pair all these macros with a corresponding ending macro such as _end_if.

Use the _if construct to express code that is conditionally executed depending on the value of a scalar. Use the
_else_if macro to chain together execution of parts of code under multiple conditions.

 f32 x = ...;
 f32 result;

 // Start an if statement.
 _if (x > 1) {
 // This code will execute if x is greater than one.
 result = x;
 } _else_if (x < 0) {
 // This code will execute if x is less than zero.
 result = x * x * x;
 } _else {
 // This code will execute if x is between zero and one.
 result = -x;
 _end_if;

You can express while loops, for loops, and do-until loops using the _while , _for and _do macros. Unlike in
C++ for statements, separate the three parameters of _for by commas instead of semicolons. The _do construct
differs from C++ do-while loops: Intel ArBB inverts the C++ loop condition and expresses it using the _until
macro.

// Initialize i to zero, and keep incrementing until it reaches a million.
 _for(i32 i = 0, i < 1000000, ++i) {
 // This code will be execute a million times.
 some_function(i);
 } _end_for;

 f32 x = 100.0f;
 // Repeat the loop body until x is no longer greater than one.
 _while (x > 1.0f) {
 x = x * 0.5f;
 } _end_while;

40

5 Intel(R) Array Building Blocks for Linux* OS User's Guide

 i32 y = 0;
 // Always execute the loop body at least once, then repeat until y is greater than ten.
 _do {
 y++;
 } _until (y > 10);

The _break and _continue statements enable terminating a loop early or continue to the next loop iteration.

 f32 x = ...;
 _for(i32 i = 0, i < 100, ++i) {
 _if (i % 2 == 0) {
 // Skip even iterations
 _continue;
 } _end_if;

 x = x * (1.0f + 1.0f/f32(i));
 _if (x > 10.0f) {
 // Stop the loop completely if x exceeds ten.
 _break;
 } _end_if;
 } _end_for;

Important. All the Intel ArBB control flow statements, including loops, execute serially.

Complex Numbers and Small Arrays

Intel® Array Building Blocks (Intel® ArBB) specializes the std::complex class template from the C++ standard
library to work correctly with floating-point scalar types arbb::f32 and arbb::f64. Instances of this specialization
behave like those on primitive types, such as std::complex<float>, but can be used to express computations
optimized and compiled by Intel ArBB.

// Declare a complex arbb::f32 variable.

std::complex<arbb::f32> z(1.0, -1.0);

// Perform a complex multiplication.

z = z * z;

// Extract the real part, imaginary part,

// and the magnitude of the complex number.

arbb::f32 r = std::real(z);

arbb::f32 i = std::imag(z);

arbb::f32 mag = std::abs(z);

// Print out the value of z.

41

Programming with Intel® Array Building Blocks 5

std::cout << "z = (" << value(r) << "," << value(i) << ")\n";

Intel ArBB provides the arbb::array class template to represent and perform operations on short arrays of
Intel ArBB scalars and other types with array sizes being determined at compile time. This type is based on the
tr1::array template supported by many C++ compilers, but adds all the operations available on scalar types
for convenience. For example, you can add two instances of arbb::array using operator+() if they have the
same size and element type. This operation adds each pair of elements from the two arrays at corresponding
indices.

The arbb::array template accepts two template parameters. The first parameter specifies the element type
contained in the array. The second parameter specifies the number of elements in the array. Both parameters
are required.

Instances of arbb::array are C++ aggregates, which means that you must initialize them using brace-enclosed
initializer lists like regular C++ arrays.

// Declare and initialize some arrays.

arbb::array<arbb::f32, 4> a = {1.0f, 2.0f, 3.0f, 4.0f};

arbb::array<arbb::f32, 4> b = {5.0f, 6.0f, 7.0f, 8.0f};

// Declare another array, and perform an array computation

arbb::array<arbb::f32, 4> c;

c = a + b;

// The c variable now contains {6.0f, 8.0f, 10.0f, 12.0f}.

As the name implies, small arrays are best used for small sequences of a fixed size due to their interface and
implementation. For larger sequences or sequences whose size is determined at run time, instead use one of
the Intel ArBB container types such as arbb::dense.

You can use both the Intel ArBB complex and small array types as parameter types for functions to be used with
arbb::call().

See Also
• Adding Parallelism with Containers

Adding Parallelism with Containers
This section introduces the Intel® Array Building Blocks (Intel® ArBB) container types, arbb::dense and
arbb::nested. Use these Intel ArBB types to allocate and manipulate arbitrary sequences of scalars, small
arrays, complex values, and user-defined types with sequence sizes determined at run time. Operations that
take place on containers are a primary means of expressing parallelism using Intel ArBB.

See also the following sections in the Intel® Array Building Blocks Application Programming Interface Reference
Manual:

• Dense Containers

• Nested Containers

• Scalar and Element-wise Functions

• Container Functions

42

5 Intel(R) Array Building Blocks for Linux* OS User's Guide

Using Dense Containers

Dense containers are the simplest containers available in Intel® Array Building Blocks (Intel® ArBB). They can be
one, two, or three-dimensional, and represent sequences of simpler Intel ArBB types such as scalars. The
arbb::dense class template represents dense containers. Use this template similarly to the standard C++
std::vector class template to store data whose size is determined at run time and to perform operations (such
as arithmetic) directly on dense containers.

The arbb::dense template accepts two template parameters. The first parameter specifies the element type of
the container (for example, arbb::f32). The second parameter specifies the number of dimensions in the
container and can be one, two, or three. If it is not specified, the number of dimensions defaults to one.

To construct dense containers do either of the following:

• Use a default constructor

• Pass in a size along each dimension

• Bind the dense container to regular C++ data

// An empty, one-dimensional dense container of f32 elements.

arbb::dense<arbb::f32> a;

// A sized but uninitialized two-dimensional dense container of i8 elements.

arbb::dense<arbb::i8, 2> b(1024, 768);

// Allocate some data and bind a dense container to it.

std::vector<float> my_data(256);

arbb::dense<arbb::f32> c;

arbb::bind(c, &my_data[0], 256);

You can use all of the operators and functions available to perform computations on scalars directly on dense
containers of those scalars. Like arbb::array, operations on containers execute in an element-wise fashion,
and the element sizes of containers used together in such an operation must match. Additionally, any element-wise
operation on a dense container that takes more than one parameter can be mixed with arguments of the element
type of the container. Because element-wise operations operate on each element of a container independently,
Intel ArBB executes such operations in parallel.

arbb::dense<arbb::f32> container_a, container_b;

arbb::f32 scalar;

// Add every element in container_a to every corresponding

// element in container_b

container_a = container_a + container_b;

// Multiply every element in container_a with scalar.

container_a = container_a * scalar;

43

Programming with Intel® Array Building Blocks 5

The arbb::dense template provides several member functions to obtain properties such as the size of a container
along each dimension. Using the square bracket (operator[]) and round bracket (operator()) operators to
read and write single elements of dense containers. The two forms of the operators are equivalent in behavior,
but the operator[] form accepts only a single index, whereas the operator() form accepts multiple indices
to access multi-dimensional containers. Use these operators in arbitrary computations involving containers. For
the special case of accessing the values in dense containers directly using C++ types, refer to the range functions.

For details on the member functions available in arbb::dense, the Intel® Array Building Blocks Application
Programming Interface Reference Manual.

See Also
• Binding and Accessing Dense Container Data

Binding and Accessing Dense Container Data

Like you access the values of Intel® Array Building Blocks (Intel® ArBB) scalar variables using the arbb::value()
function, use the range interface provided by dense containers to access their values as plain C++ data. Accessing
a dense container as a range enables your direct operating on the data in the dense container as on a regular
standard C++ container such as std::vector. Because containers can be large and may be stored by Intel
ArBB internally on another device or in an internally optimal data format, you need to indicate whether you are
accessing the dense container to read its elements, write to its elements, or both. For this reason, arbb::dense
provides three member functions to obtain ranges:

• read_only_range()

• write_only_range()

• read_write_range()

All range member functions return an arbb::range or arbb::const_range instance. This type provides access
to the data in its range through iterators with a begin() and end() member function, as well as random access
to the data using the square bracket indexing operator operator[].

arbb::dense<arbb::f32> foo(...);

// Construct a range that can be read from and written to.
arbb::range<arbb::f32> rw_range = foo.read_write_range();
rw_range[0] = 1.0f; // Set first element to 1.0f.
float second_element = rw_range[1]; // Read value of second element.

// Construct a range that can only be read.
arbb::const_range<arbb::f32> read_range = foo.read_only_range();
float third_element = read_range[2]; // Read value of third element.

// Use range iterators.
arbb::const_range<arbb::f32>::iterator begin = read_range.begin();
arbb::const_range<arbb::f32>::iterator end = read_range.end();

for (arbb::range<arbb::f32>::iterator I = begin; I != end; ++I) {
 std::cout << *I << std::endl; // Print each element in the range.
}

// Fill entire range with zeros.
std::fill(rw_range.begin(), rw_range.end(), 0.0f);

44

5 Intel(R) Array Building Blocks for Linux* OS User's Guide

Because a range access may involve some synchronization, such as waiting for a pending operation to complete
or transferring data from another device, the lifetime of a range is limited until the next Intel ArBB operation
involving the container is accessed. Once the lifetime of a range has expired, you can no longer perform operations
such as accessing its iterators on it.

arbb::dense<arbb::f32> container(...);

 // Obtain a range from the container.
 arbb::range<arbb::f32> range1 = container.read_write_range();

 // Fill entire range with zeroes.
 std::fill(rw_range.begin(), rw_range.end(), 0.0f);

 // Call a function that uses the given container.
 // range1 is now invalid.
 arbb::call(some_function)(container);

 // At this point, it is no longer safe to perform any operations
 // on range1.

 // Obtain another range from the container.
 arbb::range<arbb::f32> range2 = container.read_write_range();

 // Output the first element from the range.
 std::cout << range2[0] << std::endl;

 // Perform another operation on the container.
 // range2 is now invalid.
 container += container;

 // At this point, it is no longer safe to perform any operations
 // on range1 or range2.

If you already have data allocated using plain C++ types, you can permit Intel ArBB to directly access this data
by binding a container to the data using the arbb::bind() family of functions. A container that was initialized
in this manner is called a bound container. When you assign to a bound container, the size of the source container
must exactly match the destination container because Intel ArBB updates the data bound to the container
appropriately.

You can bind any dense container, including two-dimensional and three-dimensional containers. You must always
pass a pointer to the data being bound, as well as the number of elements along each dimension. You can specify
dimensions using either of the following:

• A sequence of scalar arguments

• arbb::array of scalars of the appropriate size

By default, Intel ArBB assumes that your data is contiguously stored in page/row/column order. All forms of
arbb::bind() also accept optional pitch parameters specifying the number of bytes between each column, row,
and page. This enables binding to arbitrary regularly ordered sequences of data, such as two-dimensional
column-major padded data, or portions of arrays of structures.

You must still use the range functions described in this section before you access the data on the host, even in
its original bound location.

NOTE. This version of Intel ArBB does not check for violations of this rule, and performs
synchronization frequently enough for the data to be directly accessed. To enable your project's
work with future versions of Intel ArBB, always use the range access functions regardless.

45

Programming with Intel® Array Building Blocks 5

If you have control over the allocation of data being bound, you can use the Intel ArBB alignment functions and
macros to ensure that your data is aligned well in memory for optimal performance. The ARBB_CPP_ALIGN macro
enables allocating global, class member, or function-local data with an appropriate alignment. You can use the
ARBB_CPP_ALIGN_ALLOCA macro to perform aligned data allocations on the stack with data size determined at
run time. Use the arbb::aligned_malloc() and arbb::aligned_free() functions to allocate aligned data
on the heap.

The following code example illustrates the use of arbb::bind() and its interaction with range functions.

 // Allocate 1024 floating point elements on the stack.
 ARBB_CPP_ALIGN(float data[1024]);

 // Fill the data with some values.
 std::fill(data, data + 1024, 1.0f);

 // Construct a dense container and bind it to the data.
 arbb::dense<arbb::f32> container;
 arbb::bind(container, data, 1024);

 // At this point, attempting to read or write to the user data
 // results have undefined behavior.

 // The following operation affects the bound data.
 container = container + 1.0f;

 // You must call a read range function before reading the values.
 container.read_only_range(); // ...or read_write_range()

 // Read some data and print it to standard output.
 std::cout << data[0] << std::endl;

 // At this point, you must call a write range function before
 // you modify the data.
 container.write_only_range(); // ...or read_write_range()

 // Write to the user data.
 data[0] = 1.0f;

 // Perform another Intel ArBB operation on the container.
 container = container * 2.0f;

 // Now you must call a range function again before you read or
 // write the data, because the previous operation invalidated
 // the above ranges.

Dense Container Operations

In addition to performing element-wise operations on dense containers, Intel® Array Building Blocks (Intel® ArBB)
also provides a wide range of operations that operate on a container as a whole to rearrange or combine its
elements.

All functions operating on containers, not only element-wise, semantically always produce a new container with
the results rather than operate on the data in place. When compiling a function through arbb::call(), Intel
ArBB looks for opportunities to reuse data without breaking these semantics when it can.

Most of the operations for dense containers process multiple elements independently. Intel ArBB takes advantage
of this feature where possible and parallelizes these operations.

For details on the operations available on dense containers, refer to the Intel® Array Building Blocks Application
Programming Interface Reference Manual.

46

5 Intel(R) Array Building Blocks for Linux* OS User's Guide

Rearranging Dense Containers

The following functions can be used to rearrange values in a dense container:

DescriptionFunction

Returns a dense container whose elements are shifted by some amount.
Out-of-bounds accesses result in a default value or a provided value.

shift

Returns a dense container whose elements are shifted by some amount.
Out-of-bounds accesses are clamped to the edges of the container.

shift_sticky

Returns a dense container whose elements are shifted by some amount.
Out-of-bounds accesses are wrapped to repeat the container.

rotate

Equivalent to shift[_sticky](container, 0, distance, …).shift_row[_sticky]

Equivalent to shift[_sticky](container, distance, 0, …).shift_col[_sticky]

Equivalent to shift[_sticky](container, 0, 0, distance, …).shift_page[_sticky]

Returns a one-dimensional dense container storing a given number of copies of
the one-dimensional source.

repeat

Returns a two-dimensional dense container where each row corresponds to the
one-dimensional source.

repeat_row

Returns a two-dimensional dense container where each column corresponds to
the one-dimensional source.

repeat_col

Returns a three-dimensional dense container where each page corresponds to the
two-dimensional source.

repeat_page

Returns a dense container with a sub-section replaced by another container.replace

Returns a dense container with a row replaced by another container.replace_row

Returns a dense container with a column replaced by another container.replace_col

Returns a dense container with a page replaced by another container.replace_page

Returns a dense container with a pillar replaced by another container.replace_dim3

Returns a dense container with the two given rows swapped.swap_rows

Returns a dense container with the two given columns swapped.swap_cols

Returns a dense container with the two given pages swapped.swap_pages

Returns a transposed dense container. For three-dimensional containers, only the
rows and columns are transposed.

transpose

Returns a dense container containing a subsection of the source container.section

47

Programming with Intel® Array Building Blocks 5

DescriptionFunction

Returns a dense container sorted by its values or keys provided in another
container.

sort

Returns a dense container containing the concatenation of two source containers.cat

Returns a two-dimensional or three-dimensional dense container of a given size
filled with values from a one-dimensional dense container.

reshape

Returns a two-dimensional or three-dimensional dense container with the same
size as another container filled with values from a one-dimensional dense container.

reshape_as

Returns a dense container storing elements alternately drawn from two source
containers.

shuffle

Returns the concatenation of two dense containers obtained by alternately drawing
elements from a source container.

unshuffle

Gathering and Scattering

The following functions use a container of indices to read from an existing or write to a new dense container.

DescriptionFunction

Returns a dense container with elements drawn from a provided source based on
a provided sequence of indices.

gather()

Returns a dense container with elements at provided indices set to corresponding
elements from a source container, and all other elements initialized to default
values or drawn from another container. Duplicate indices lead to unspecified
values in those indices.

scatter()

Performs the same operation as scatter(), but merges duplicate indices by adding
their values together.

add_merge()

Mask Operations

Use the following functions to rearrange data in a dense container based on a mask:

DescriptionFunction

Returns a dense container containing only those elements from a given source
container whose corresponding values in a provided mask are true.

pack()

Returns a dense container containing with elements at a given index drawn from
a source container if corresponding values in a provided mask are true. Values
where the mask contains false elements are initialized using a default or provided
element.

unpack()

48

5 Intel(R) Array Building Blocks for Linux* OS User's Guide

Filling Dense Containers with Patterns

Intel® Array Building Blocks provides the following functions to create a dense container with a regular pattern:

DescriptionFunction

Returns a dense container containing the same element repeatedly.fill()

Returns a dense container with a regularly increasing sequence of indices.indices()

Returns a dense container containing a repeating pattern of true and false values.mask()

Nested Containers

Nested containers provide the ability to represent a container of sub-containers. Nested containers are limited
to one level of nesting, which means that nested containers are equivalent to a sequence of dense containers.
The dense containers stored in a nested containers are called segments.

The arbb::nested class template represents nested containers. It takes a single template parameter specifying
the element type of its segments. Unlike dense containers, nested containers are always one-dimensional. You
create instances of arbb::nested by transforming dense containers into nested containers, or by performing
operations on nested containers.

Like dense containers, any function available on the element type of a nested container can also be applied to
nested containers as a whole. In that case the number of segments, as well as each segment size, must match
amongst any nested containers used in an operation taking more than one nested container. The operation will
be applied segment-by-segment to matching elements in matching segments.

Nested containers provide a set of member functions to access properties such as the number and lengths of
segments. It also provides segment() member function to extract a single segment from a nested container,
and a round-bracket operator (operator()) to extract a single element from a given segment. For details on
the member functions provided by arbb::nested, refer to the Intel® Array Building Blocks Application
Programming Interface Reference Manual.

Nested Container Operations

Intel® Array Building Blocks (Intel® ArBB) provides several functions that operate on nested containers as a
whole, as well as several ways to construct nested containers from dense containers. As with the element-wise
operations, and operations provided on dense containers, most of these operations involve processing several
independent elements at once. Intel ArBB parallelizes these operations when possible.

For details on all the operations available on nested containers, refer to the Intel® Array Building Blocks Application
Programming Interface Reference Manual.

Creating Nested Containers from Dense Containers

The following functions can be used to create a nested container from a dense container:

DescriptionFunction

Returns a nested container with segment elements drawn from a given
dense container and segment boundaries provided as an increasing list of
offsets.

reshape_nested_offsets()

49

Programming with Intel® Array Building Blocks 5

DescriptionFunction

Returns a nested container with segment elements drawn from a given
dense container and segment boundaries provided as a list of segment
lengths.

reshape_nested_lenghts()

Returns a nested container with segment elements drawn from a given
dense container and segment boundaries provided as a mask indicating
new segment boundaries.

reshape_nested_flags()

Returns a nested vector containing up to three segments, with each segment
containing data from a dense container depending on whether a
corresponding value in another dense container is -1, 0 or 1.

split()

Rearranging Nested Containers

The following functions can be used to rearrange the segments of nested containers or elements in segments of
nested containers. In general these functions accept an optional level argument as their last parameter, which
can be used to adjust whether the operation applies to the segments (level 0) or the elements of the segments
(level 1). By default, operations apply at the segment level.

DescriptionFunction

Returns a nested vector containing several copies of the segments or
segment elements in a provided nested container.

repeat()

Returns a nested container with one element of a particular segment
replaced by a given value.

replace()

Returns a nested container with one segment replaced by a provided dense
container.

replace_segment()

Returns a nested container with the same segment shape as a given nested
container, containing data drawn from a given dense container.

reshape_as()

Returns a nested vector containing up to three segments, with each segment
containing data from a nested container depending on whether a
corresponding value in another nested container is -1, 0 or 1.

split()

Returns a container given a container of -1/0/1 values such that splitting
it would recreate the source container.

unsplit()

Returns a nested container containing the concatenation of two source
containers at the element or segment level.

cat()

Returns a nested container containing segments or segment elements
alternately drawn from two source containers.

shuffle()

Returns the concatenation of two nested containers obtained by alternately
drawing segments or segment elements from a source container.

unshuffle()

50

5 Intel(R) Array Building Blocks for Linux* OS User's Guide

DescriptionFunction

Returns a nested container with elements at a given index drawn from a
source container if corresponding values in a provided mask are true. Values
where the mask contains false elements are initialized using a default or
provided element.

unpack()

Reductions and Scans

Intel® Array Building Blocks (Intel® ArBB) provides reduction and scan functions that can be applied to dense
and nested containers. These functions combine the elements of a container, e.g. by summing them. In the case
of a reduction, all elements along one or more dimensions are reduced into a single element. In the case of a
scan, each element in the resulting container contains the partial combination of all values up to that point.

For every operation supported in a reduction or scan, at least three versions are provided: a reduction function,
an exclusive scan function, and an inclusive scan function. The exclusive scan always returns an initial element
containing the identity for the given operation (for example, a zero value for an addition, or a one value for a
product), and includes all elements up to a given index in the computation of a given result element. The inclusive
scan always returns the first element of the source container as its first element, and includes all elements up
to and including a given index in the computation of a given result element.

Reductions and scans can apply to a particular dimension of a multi-dimensional nested container. Reductions
and scans on nested containers always apply to each segment independently.

Some common reduction functions, for example, sum reductions, also have short-hand versions that reduce
along all dimensions, producing a single element as the result.

This table lists all of the scan and reduction functions available in Intel ArBB:

Full Reduction
Inclusive ScanExclusive ScanReduction

Operation

sum()add_iscan()add_scan()add_reduce()Addition

mul_iscan()mul_scan()mul_reduce()Multiplication

min_iscan()min_scan()min_reduce()Minimum

max_iscan()max_scan()max_reduce()Maximum

all()and_iscan()and_scan()and_reduce()Logical and

any()ior_iscan()ior_scan()ior_reduce()Logical or

xor_iscan()xor_scan()xor_reduce()Logical xor

Adding Parallelism Using map()
This section introduces the arbb::map() function and explains how to use it.

The arbb::map() function behaves very similarly to arbb::call() that passes a C++ function to Intel® Array
Building Blocks (Intel® ArBB) for optimized execution. Such call can contain parallelism in the form of operations
applied to containers but is not parallel itself. The arbb::map() function permits you to invoke a function written
in terms of scalars across all elements of one or more dense containers.

51

Programming with Intel® Array Building Blocks 5

See Also
• Writing Simple Functions Using Scalars
• Adding Parallelism with Containers

Using the map() Function

To use a function with arbb::map(), you need to write it in terms of individual elements. When invoking the
function using arbb::map(), you can pass one or more arguments to these elements using containers of the
element type. You can also pass arguments that exactly match the type of the parameter as you do for
arbb::call(). Container arguments passed to element type parameters are called varying arguments. Arguments
that exactly match the parameter type are called fixed arguments.

You must ensure that the dimensionalities and sizes of all varying arguments passed to arbb::map() invocation
match exactly, otherwise a run-time error occurs. At least one of the varying arguments must be an output
argument that is passed to a parameter of non-const reference type.

As the compilation of a function using arbb::map() depends on the arguments being varying or fixed, you can
only use arbb::map() within an arbb::call() invocation. You cannot place invocations of arbb::map(),
arbb::call(), or allocations of containers inside a function invoked through arbb::map().

This code example illustrates the use of arbb::map():

#include <iostream>
#include <arbb.hpp>

 // You may pass this function to arbb::map(), because it returns
 // void, takes fewer than 35 parameters (three), and the parameters
 // are all of Intel(R) ArBB types, or references thereof.
 // It also does not contain any arbb::map() or arbb::call()
 // invocations, or declare any local containers, and has a
 // non-container parameter (a) declared as a reference.
 void blend_in_scalar(arbb::f32& a, arbb::f32 factor, arbb::f32 b)
 {
 a += factor * b;
 }

 // As arbb::map() can only occur within a function passed to
 // arbb::call(), and not within functions such as main() below,
 // this function is written to perform the actual arbb::map().
 void blend_in(arbb::dense<arbb::f32>& a, arbb::f32 factor, arbb::dense<arbb::f32> b)
 {
 // This applies blend_in_scalar to all elements of a and b
 // (which are thus varying arguments), with the same value of
 // factor corresponding to all elements (a fixed argument).
 arbb::map(blend_in_scalar)(a, factor, b);
 }
 int main()
 {
 // Create some arbitrary sample data
 arbb::dense<arbb::f32> base = arbb::fill(0.0f, 1024);
 arbb::dense<arbb::f32> addition = arbb::fill(10.0f, 1024);
 arbb::f32 factor = 0.1f;

 // Apply the function a few times.
 for (int i = 0; i < 4; ++i) {
 arbb::call(blend_in)(base, factor, addition);
 }

52

5 Intel(R) Array Building Blocks for Linux* OS User's Guide

 // Output the resulting values
 arbb::const_range<arbb::f32> base_data = base.read_only_range();
 for (std::size_t j = 0; j < 1024; ++j) {
 std::cout << arbb::value(base_data[j]) << std::endl;
 }
 }

For additional information, see the "Function Invocation" section of the Intel® Array Building Blocks Application
Programming Interface Reference Manual.

User-defined Types
Intel® Array Building Blocks (Intel® ArBB) supports the use of user-defined C++ classes and structures in functions
passed to arbb::call() and as element types of containers.

See also the User-defined Types section of the Intel® Array Building Blocks Application Programming Interface
Reference Manual.

Overview of User-defined Type Support

To be used with functions executed through Intel® Array Building Blocks (Intel® ArBB) and in Intel ArBB containers,
a user-defined type must contain only data members belonging to Intel ArBB types or other valid user-defined
types and follow the specified rules. Functions using types that follow these rules or member functions of such
types can be used in Intel ArBB computations and apply to containers of these types.

With user-defined types, you can write structured C++ code using Intel ArBB and retain the existing structure
of C++ code ported to Intel ArBB. You can use most of the template types directly with the Intel ArBB types.

For example, the tr1::array class provided in many standard libraries of C++ compilers can be used with any
Intel ArBB scalar type or user-defined type, even in computations provided to Intel ArBB through arbb::call().
As tr1::array is not supported by some compilers, Intel ArBB provides its own type arbb::array based on
tr1::array extending the functionality of this type. For example, arbb::array supports element-wise operations.

If you define a function on a user-defined type that has the same name as a function available on Intel ArBB
scalar types and a matching function signature, you can use this function on containers of your user-defined
types. For example, if you define an addition operator by overloading operator+() on a user-defined type, you
can add containers of that user-defined type. Classes representing values of a type, especially numerical classes,
are likely to define many operators and scalar functions provided by Intel ArBB. If they satisfy the rules for
user-defined types, you can automatically use these functions on containers of these types. The functions are
applied in an element-wise manner, as if applied to the containers using an arbb::map() invocation containing
a call to the user-defined function.

Intel ArBB provides a set of macros to declare your functions to Intel ArBB. These macros can process any
functions and member functions applying to your types that you may want to use for containers of these types.
You can use these macros to declare functions, member functions, and function templates to enable their
application to containers of user-defined types. This mechanism makes your types as useful as scalar types, as
it permits the arbb::array class and std::complex specialization on floating-point scalar types to work as
first-class types in Intel ArBB.

All these functionalities are especially useful because they permit Intel ArBB to capture all computations of a
function using user-defined types, and optimize them in the same way as the computations applied directly to
built-in Intel ArBB types. The nature of the Intel ArBB C++ frontend eliminates inherent performance penalty
for using user-defined types. Like C++ templates, the user-defined type support in Intel ArBB permits functions
to be easily inlined and thus optimized well.

53

Programming with Intel® Array Building Blocks 5

The following code example shows several user-defined type features and their usage:

 // A user-defined class that satisfies the requirements for use inside
 // of Intel(R) ArBB containers and functions.
 class quaternion {
 public:
 // Because this class does not define any constructors or assignment
 // operations, it will get the compiler-generated implicit versions,
 // which are suitable for Intel(R) ArBB user-defined types.

 // Since operator* is one of the built-in operations on Intel(R)
 // ArBB scalars, it will automatically become available to
 // containers of quaternions.
 quaternion operator*(const quaternion& o) const
 {
 quaternion r;
 r.a = a*o.a - b*o.b - c*o.c - d*o.d;
 r.b = a*o.b + b*o.a + c*o.d - d*o.c;
 r.c = a*o.c - b*o.d + c*o.a + d*o.b;
 r.d = a*o.d + b*o.c - c*o.b + d*o.a;

 return r;
 }

 // We need to declare this function to Intel(R) ArBB to make it
 // available on containers of quaternions, since norm() is not a
 // built-in function on scalars. We do this using
 // ARBB_ELTWISE_METHOD_0 below.
 f32 norm() const
 {
 return sqrt(a*a + b*b + c*c + d*d);
 }

 // ...

 private:
 // Because all non-static member variables are instance of
 // Intel(R) ArBB types, and none of them are containers, this
 // class can be used as an Intel(R) ArBB user-defined type.
 f32 a, b, c, d;
 };

 // Declare the quaternion::norm() member function to Intel(R)
 // ArBB. This will provide a free function called norm() that takes a
 // single container of quaternions and returns a container of f32
 // elements.
 //
 // You must specify the return type, the class to which the member
 // function belongs, and the member function name. Because this member
 // function does not accept any parameters, no parameter types need to
 // be supplied.
 //
 // Note that this member function returns an f32. Regular
 // Intel(R) ArBB types can be mixed with user-defined types in this way.
 ARBB_ELTWISE_METHOD_0(f32, quaternion, norm);

See Also
• Writing Simple Functions Using Scalars
• Adding Parallelism with Containers

54

5 Intel(R) Array Building Blocks for Linux* OS User's Guide

Rules for User-defined Types

You can pass a user-defined type as a parameter to a function processed by arbb::call() if it satisfies the
following constraints:

• The type has a public default constructor, copy constructor, assignment operator, and non-virtual destructor.
All these functions must be either implicitly declared or behave as implicitly declared.

• All non-static member variables of the types must be instances of Intel® Array Building Blocks (Intel® ArBB)
scalar types, container types, or other valid user-defined types.

• If the type has any base classes, they must be valid user-defined types.

For example, a simple C++ struct containing only data members of Intel ArBB types satisfies these constraints
as its constructors and assignment operator are implicitly declared. If you add simple functions to such structure,
it remains a valid user-defined type. The rules above allow a type to be passed to a function and compiled and
executed through Intel® Array Building Blocks. If a class complying to these rules does not contain any container
members, you can also use it as an element type for an Intel ArBB container such as arbb::dense.

Declaring Functions on User-defined Types

You can use the ARBB_ELTWISE family of macros to declare free functions and member functions to Intel® Array
Building Blocks (Intel® ArBB). This enables using these functions with containers of their parameter types.

All ARBB_ELTWISE macros fall into three categories:

• ARBB_ELTWISE_FUNCTION macros to declare free functions

• ARBB_ELTWISE_METHOD macros to declare member functions

• ARBB_ELTWISE_TMETHOD macros to declare member functions of class templates

Intel ArBB supports declaration of functions with up to 35 parameters. Each category of macros provides specific
macros for functions with different number of parameters. The naming pattern for the macros is
<category_name>_<number>, where <number> specifies the number of parameters to the function being
declared. For example, ARBB_ELTWISE_METHOD_3 declares a member function that takes three parameters.

For member functions, every function declaration macro takes the parameters in the following order:

1. the return type of the function being declared

2. the class name

3. the function name with parameter types, if any

Only member functions can be declared without parameters. You should include a const keyword and/or use a
reference type for all types passed to the macros, depending on the way the function is declared.

Free functions declared through ARBB_ELTWISE_FUNCTION macros can be used on containers of their parameter
types. You can use the container versions of member functions by calling a free function of the same name and
passing the desired class instance of the member function as the first argument.

When using free or member functions, you can also mix containers and single instances of the parameter types.

Specializing Computations with Closures
This section explains how you can use closures for specialing computations.

55

Programming with Intel® Array Building Blocks 5

For additional details, see the "Closures" section and the appendix on Virtual Machine API in Intel® Array Building
Blocks Application Programming Interface Reference Manual and also Intel® Array Building Blocks Virtual Machine
Specification 1.0 Beta 1.

See Also
• Writing Simple Functions Using Scalars :: Control Flow
• Writing Simple Functions Using Scalars :: Writing and Calling Functions

Using Closures with arbb::call()

To execute a function using arbb::call(), use the following syntax:

arbb::call(function)(argument1, argument2/*, more arguments */);

This expression contains two sets of parentheses because arbb::call() can only take one parameter, that is
the function being called. The second set of parentheses containing the arguments passed to the function is
actually an invocation of the call operator (operator()()) on the object returned by arbb::call(). The return
type of arbb::call() is an instance of the arbb::closure class template.

Closures are functions introduced to Intel® Array Building Blocks (Intel® ArBB) by a process called closure capture,
or capture for short. Once captured, a closure can be re-executed many times without incurring any compilation
overhead.

The arbb::call() function itself is quite simple. It checks whether it has already seen the address of the
function being passed in. If it sees the function for the first time, it captures the function into an arbb::closure
using the arbb::capture() function and returns the resulting closure. Otherwise, it returns the previously
captured closure. As closures are lightweight references to the actual object code corresponding to a closure
capture, copying them around does not affect performance, allowing arbb::call() to be used in inner loops.

The following code example shows several user-defined type features and their usage:

 void my_function(arbb::dense<arbb::f32>& a, arbb::dense<arbb::f32> b);

 int main() {
 // ...
 while (processing) {
 // arbb::call can be used in inner loops because it is relatively cheap.
 arbb::call(my_function)(foo, bar);
 }
}

However, using closures this way you can save small amount of run time by moving an arbb::call() invocation
out of a loop and using a closure to store the result. Since the result of an arbb::call() invocation over the
same function is the same in every iteration of the loop, you can use the returned closure from the first call
directly in your loop.

void my_function(arbb::dense<arbb::f32>& a, arbb::dense<arbb::f32> b);
int main() {
 // ...

 // The template parameter to arbb::closure is the signature of the
 // function.
 arbb::closure<void (arbb::dense<arbb::f32>&, arbb::dense<arbb::f32>)> c;
 // Capture my_function and store the resulting closure in c.
 c = arbb::call(my_function);
 while (processing) {
 // Using the closure directly avoids the small cost of
 // retrieving the closure previously captured from my_function.

56

5 Intel(R) Array Building Blocks for Linux* OS User's Guide

 c(foo, bar);
 }
}

See Also
• Writing Simple Functions Using Scalars
• Adding Parallelism with Containers

Closure Capture

Closure capture uses a simple mechanism, but the process has important implications for code that mixes
operations on Intel® Array Building Blocks (Intel® ArBB) types and regular C++ types, such as float or std::ostream.
Closure capture simply executes the function passed to it, passing proxy values as parameters to the function.

Before executing the function, arbb::capture() records the new closure as the one currently being captured by
Intel ArBB. As a result, all operations on primitive Intel ArBB types add an instruction to the new closure specifying
what operation they correspond to.

After executing the function, the closure contains a sequence of instructions exactly corresponding to all the
operations on Intel ArBB types performed by the function. The control flow macros such as _if also simply record
their presence, executing both bodies of an if-statement, and executing a loop iteration exactly once, but
maintaining the control flow structure in the closure.

Once a closure is captured, Intel ArBB can compile it for a supported architecture and use the compiled object
to execute the computations captured from the function repeatedly without any compilation overhead. As this
process occurs at run time, the generated code can be optimized for the exact machine configuration in use.

Run-time Specialization Using Closure Capture

As closure capture simply executes a function, it also executes any operations in the function that do not use
Intel® Array Building Blocks (Intel® ArBB) types. For example, computations expressed with C++ primitive types
such as float and int execute during capture. They do not execute again when the captured closure itself is
executed. If the result of such computation is subsequently used in a computation involving Intel ArBB types, it
becomes part of the closure.

Similarly, regular C++ control flow, such as if statements and for loops, also execute in the usual manner. Intel
ArBB computations inside of such control flow execute as many times as the control flow body executes, and
insert as many computations to be performed into the new closure. For example, a for loop containing Intel ArBB
computations results in an unrolled loop containing one copy of all computations in the loop body for each iteration
during capture.

In the following example, if my_function is captured using arbb::capture(), the value of the variable use_for
at capture time determines whether the operations on the Intel ArBB scalar passed to the function are expressed
using a for loop or manually unrolled. In either case, the same set of Intel ArBB operations is stored in the
captured closure. This makes manual unrolling using Intel ArBB unnecessary.

NOTE. Intel ArBB can also unroll constructs such as _for loops automatically during the compilation
of a closure. Still, using for loops can be helpful if you want to force the unrolling.

bool use_for = true;

void my_function(i32& a)
{

57

Programming with Intel® Array Building Blocks 5

 if (use_for) {
 // Equivalent to the else case below.
 for (unsigned int i = 0; i < 4; ++i) {
 a++;
 }
 } else {
 // Equivalent to the if case above.
 a++; a++; a++; a++;
 }
}

This simple mechanism enables writing arbitrary C++ code that generates Intel ArBB code. As you have access
to all the run-time state of your C++ program, you can decide what code to generate based on information
available only at run time. For example, you can include algorithmic choices in your function being captured and
pick appropriate values based on characteristics of a data set loaded at run time. You can also easily wrap a
capture call in a loop and generate multiple versions of the same function to be picked at a later time, or run
performance tests on multiple versions of a function and pick the fastest one.

Since you are writing plain C++ code, you can use all the modularity features of C++ to keep your program
well-structured and maintainable, without paying any cost for that modularity during the execution of your
closure.

If you have an interpreter for a domain-specific language, you can turn the interpreter into a compiler using
Intel ArBB:

1. Implement the parts of the interpreter that execute operations using Intel ArBB types.

2. Wrap an interpretation of a program in your domain-specific language in an arbb::capture() call.

The resulting closure contains the code specified in your language, translated into Intel ArBB operations. This
closure can be compiled and executed using the Intel ArBB run-time library.

If you are using Intel ArBB to implement a language frontend, consider using the Intel ArBB Virtual Machine
(VM) layer to build VM functions. These functions are the underlying type from which closures are constructed.
The VM layer provides a simple C89 (the 1989 version of the C standard, with a few later additions supported
by common compilers and foreign function interfaces such as use of const) Application Programming Interface
(API).

The VM provides all the semantics available through the C++ frontend. Its syntax is less convenient, but it
provides a simpler interface to access from interpreters, compilers, and languages other than C++. In the VM,
variables such as scalars and dense containers are dynamically typed instances of the arbb_variable_t VM type.
This makes them usable from dynamically typed languages and easier to use for statically compiled frontends.
All Intel ArBB C++ frontend features are built on the fully-documented virtual machine API, so you can build the
same features using your language as a frontend.

Closure Type Safety and Auto Closures

The arbb::closure type is a class template statically typed on the captured functions that can be assigned to
it. Assigning a function closure to a closure not matching that function signature results in a compile-time error
because the closure types do not match. Attempting to pass arguments to a closure that do not match the
parameter types of the captured function also results in a compile-time error. These type checks permit to catch
errors during C++ compilation.

While the type safety of arbb::closure is usually desirable, you may sometimes want to defer error checking
until run time, or perform assignments between closures of different types. The arbb::auto_closure class
enables you doing this by declaring auto closures. As arbb::auto_closure class is not a class template, you

58

5 Intel(R) Array Building Blocks for Linux* OS User's Guide

can assign to it regardless of the types of the closures involved. Attempting to assign an arbb::auto_closure
to an arbb::closure with a type that does not match the captured function stored in the auto closure results
in a run-time error, to preserve the type safety of arbb::closure.

An auto closure can be executed like a regular closure. However, calling an auto closure does not perform any
compile-time checking. Attempting to call an auto closure with arguments that do not match the parameter types
of the captured function results in a run-time error.

Error Handling
You can meet the following kinds of errors when you use the Intel® Array Building Blocks (Intel® ArBB) C++
frontend:

• compile-time errors caught by your C++ compiler; such errors cause compilation failure, when you use
Intel ArBB to compile a C++ file containing a syntactical or type checking related error.

• runtime errors that cause an arbb::exception (or derived class) instance to be thrown.

Run-time Exceptions

All exceptions thrown by Intel® Array Building Blocks (Intel® ArBB) are instances of the arbb::exception class
or its derived classes. The arbb::exception class itself derives from std::exception, so that instances of
arbb::exception can be caught as part of standard C++ exception handling.

The only member function provided by arbb::exception is arbb::exception::what(). Like the member
function from std::exception, it returns a const char* containing a descriptive message of the exception
that occurred.

See the table below for the possible exceptions from Intel ArBB C++ frontend.

DescriptionException Type

An error that does not correspond to any of the categories below
occurred.

arbb::exception

An attempt was made to access a container outside of its bounds.arbb::out_of_bounds

An arithmetic error, such as an integer division by zero, occurred.arbb::arithmetic_error

A memory allocation attempt failed.arbb::bad_alloc

A variable was accessed before it was initialized with a value.arbb::uninitialized_access

An unsupported operation was attempted inside of arbb::map().arbb::invalid_op_within_map

An unexpected internal error occurred.arbb::internal_error

The arbb::internal_error exception type is thrown only when an unexpected internal error, such as an
assertion failure inside of the Intel ArBB implementation, occurred. Unless a program has overwritten memory
contents in an undefined manner, this exception usually indicates a bug in Intel ArBB. If you encounter an
arbb::internal_error, please file a bug report so that we can fix the problem.

59

Programming with Intel® Array Building Blocks 5

60

5 Intel(R) Array Building Blocks for Linux* OS User's Guide

6Porting C Code to Intel® Array
Building Blocks

This book explains how C++ data space interacts with the Intel® Array Building Blocks data space and gives the
examples on how to port C++ code.

Dot Product
A simple example of calculating the dot product:

Using C Loops

for (i = 0; i < n; i++) {

dst += src1[i] * src2[i];}

Using Intel® Array Building Blocks:

dense<f64> vsrc1; bind(src1, n);

dense<f64> vsrc2; bind(src2, n);

f64 dst = add_reduce(vsrc1 * vsrc2);

Black-Scholes
Black-Scholes is a well-accepted analytical model for European option pricing which is a computation-intensive
financial engineering application. The pseudocode below shows the sequential C++ code to be ported to the
Intel® Array Building Blocks (Intel® ArBB).

 0 float s[n], x[n], r[n], v[n], t[n];
 1 float result[n];
 2 for(int i = 0; i < n; i++) {
 3 float d1 = s[i] / ln(x[i]);
 4 d1 += (r[i] + v[i] * v[i] * 0.5f) * t[i];
 5 d1 /= sqrt(t[i]);
 6 float d2 = d1 - sqrt(t[i]);
 7 result[i] = x[i] * exp(r[i] * t[i]) *
 8 (1.0f - CND(d2)) + (-s[i]) * (1.0f - CND(d1));
 9 }

The pseudocode below shows its Intel ArBB counterpart after porting. These two pieces of code are very similar
(lines 4-9, 10-12).

 0 #include <arbb.hpp>
 1 using namespace arbb;

61

 2 float s[n], x[n], r[n], v[n], t[n];
 3 float result[n];
 4 dense <f32> vs, vx, vr, vv, vt, vresult;
 5 bind(vs, v, n); bind(vx, x, n); bind(vr, r, n); bind(vv, v, n); bind(vt, t, n);
 6 bind(vresult, result, n);
 7 call(black_scholes)(vs, vx, vr, vv, vt, vresult);

 8 template <typename T>
 9 void black_scholes(dense<T> s, dense<T> x, dense<T> r, dense<T> v, dense<T> t,
 dense<T>& result) {
 10 dense<T>d1 = s / ln(x);
 11 d1 += (r + v * v * 0.5f) * t;
 12 d1 /= sqrt(t);
 13 dense<T>d2 = d1 - sqrt(t);
 14 result = x * exp(r * t) * (1.0f - CND(d2)) + (-s) * (1.0f - CND(d1));
 15 }

The only differences are the following:

• Intel ArBB needs to include the arbb.hpp header file and use the namespace arbb(lines 0, 1).

• Intel ArBB adds the dense declarations (line 4-5) and the call operation (line 7).

• Intel ArBB exempts you from having to manipulate arrays in loops and subscripts. Instead, it encapsulates
the application logic into a Intel ArBB function (lines 10-12).

• Intel ArBB code can co-exist well with C++'s parametric polymorphism, enabling the code to be instantiated
with different types T.

Computing Pi
The following pseudocode computes Pi number.

 1 srand(time(NULL));
 2 num_inside = 0.0f;
 3 for(i = 0; i < NSET; i++) {
 5 // Generate x, y random numbers in [0,1)
 6 float x = float(rand()) / float(RAND_MAX);
 7 float y = float(rand()) / float(RAND_MAX);
 8 float distance_from_zero = sqrt(x*x + y*y);
 9 if (distance_from_zero <= 1.0f)
 10 num_inside += 1.0f;
 11 else
 12 num_inside += 0.0f;
 13 }
 14 float pi = 4.0f * (num_inside / NSET);

The pseudocode below shows its Intel® Array Building Blocks (Intel® ArBB) counterpart after porting.

 0 #include <../samples/finance/randomlib/arbb_random.hpp>
 1 Uniform<> rng(NSET);
 2 dense<f32> x = rng.randUnit();
 3 dense<f32> y = rng.randUnit();
 4 dense<f32> distance_from_zero = sqrt(x*x + y*y);
 5 dense<f32> inside_circle = select(dist_from_zero <= 1.0f, 1.0f, 0.0f);

62

6 Intel(R) Array Building Blocks for Linux* OS User's Guide

 6 f32 pi = 4.0f * (add_reduce(inside_circle) / NSET)

The main differences are the following:

• Intel ArBB uses Uniform Random Generator for C's rand() (line 1).

• Intel ArBB uses select() (line 5) instead of C's conditional (lines 9-12).

Binomial Tree for Options Pricing
The C code to compute binomial tree for options pricing:

for (int k = 0; k < NUM_OPTIONS; k++) {

 ...

 float opt_price[TIMESTEPS];

 ...

 for (int i = TIMESTEPS - 1; i >=0; i--) {

 for (int j = 0; j <= i; j++) {

 float compute_value =

 (p * opt_price[j] + (1-p) * opt_price[j+1])

 * multiplier;

 float t1 = upow_tbl[i - j] * dpow_tbl[j];

 float early_value = max(exe_price - t1, (T)0.0);

 opt_price[j] =

 max(early_value, compute_value);

 }

 }

}

Intel® Array Building Blocks code, red color shows the difference between C and Intel Array Building Blocks code:

f32 map_binomial_tree(...) {

 ...

dense<f32> opt_price = fill(0, TIMESTEPS)

 ...

 _for (i = TIMESTEPS - 1, i >=0, i--) {

 _for (j = 0, j <= i, j++) {

 f32 compute_value = (p * opt_price[j] + (1-p) * opt_price[j+1])* multiplier;

 f32 t1 = upow_tbl[i - j] * dpow_tbl[j];

63

Porting C Code to Intel® Array Building Blocks 6

 f32 early_value = max(exe_price - t1, f32(0.0f));

 opt_price = replace(opt_price, j, max(early_value, compute_value));

 }_end_for

 }_end_for

 return f32(opt_price[0]);

}

dense<f32> options = map(map_binomial_tree)(...);

Monte Carlo Poisson Solver
This section shows how to port C code for Monte Carlo Poisson Solver, red color shows the difference between
C and Intel® Array Building Blocks code.

C code:

for (i=0; i<NUM_POINTS; i++) {

 xx = x[i];

 yy = y[i];

 while (1) {

 min_dist = minDist(xx, yy);

 if (min_dist < acceptDist)

 break;

 double ran = double(rand())/RAND_MAX;

 xx += min_dist * sin(2*pi*ran);

 yy += min_dist * cos(2*pi*ran);

 }

}

Intel Array Building Blocks code:

Start porting by applying the above described porting rules:

Uniform<> rng(NUM_POINTS);

_while (true) {

 dense<f64> min_dist = minDist(xx, yy);

 ...

 dense<f64> ran = rng.randUnit();

 xx += min_dist * sin(2*pi*ran);

 yy += min_dist * cos(2*pi*ran);

64

6 Intel(R) Array Building Blocks for Linux* OS User's Guide

}_end_while

Translate the if... break conditional:

Uniform<> rng(NUM_POINTS);

_while (true) {

 dense<f64> min_dist = minDist(xx, yy);

dense<bool> mask = minDist < acceptDist;

 _if(all(mask)) {

 _break;

 }_end_if

 dense<f64> ran = rng.randUnit();

 xx += min_dist * sin(2*pi*ran);

 yy += min_dist * cos(2*pi*ran);

}_end_while

The C program iterates different times for different xx, yy. In the Intel Array Building Blocks code use
select(mask, ...) to prevent further iterations for those already with mask 1

Uniform<> rng(NUM_POINTS);

_while (true) {

 dense<f64> min_dist = minDist(xx, yy);

dense<bool> mask = minDist < acceptDist;

_if(all(mask)) {

_break;

}_end_if

 dense<f64> ran = rng.randUnit();

xx = select(mask, xx, xx + min_dist * sin(2*pi*ran);

yy = select(mask, yy, yy + min_dist * cos(2*pi*ran);

}_end_while

Different x[i], y[i] converge at different rates, _if(all(mask)) approach converges at the slowest rate
until the last one to satisfy minDist < acceptDist.

If most elements converge fast, it might be a good idea to do pack(), so that further iterations only happen for
those with mask 0:

_while (true) {

 ...

 dense<bool> mask = minDist < acceptDist;

 _if(all(mask)) {

 _break;

 }_end_if

65

Porting C Code to Intel® Array Building Blocks 6

 xx = pack(xx, !mask);

 yy = pack(yy, !mask);

 ...

}_end_while

But the best solution is to use map function:

void poissonSolver(f64 &x, f64&y) {

 Uniform<> rng(1); //assuming length is 1

 _while (true) {

 f64 min_dist = minDist(x, y);

 _if (minDist < acceptDist) {

 _break;

 }_end_if

 f64 ran = rng.randUnit()[0];

 x += min_dist * sin(2*pi*ran);

 y += min_dist * cos(2*pi*ran);

 }_end_while

}

General Convolution
Convolution is a widely used function in many application domains ranging from signal/image processing to
statistics and geophysics. The computation pattern of convolution is slightly trickier.

Figure below shows a typical 1D convolution algorithm, where y is a data set, and x is the kernel sliding through
the data set.

The C implementation is illustrated below. As compared to Figure above, you may find the loop structure is more
complicated and the array access pattern is more irregular (particularly, y[i - j].

66

6 Intel(R) Array Building Blocks for Linux* OS User's Guide

float x[M], y[N], z[N];

for (int i = 0; i < N; i++) {

 z[i] = 0.0f;

 for (int j = 0; j < M; j++)

 if (i >= j) {

 z[i] += x[j] * y[i-j];

 }

 }

}

You must map the doubly-nested loops to dense objects. Obviously, you want to abstract the data set y to be
a dense object Y. At this point, you peel the outer loop and change all the instances of y to Y. This porting uses
a lighter-weight operator shift. You can consider the kernel X fixed while the data set Y is sliding leftward,
which makes the result equivalent. The optimized implementation isshown below:

dense<f32> X, Y, Z;

Z = fill(0.0f, N);

_for (i32 j = 0, j < M, j++) {

 Z += X[j] * shift(Y, -j);

} _end_for;

Note that the 1D Intel Array Building Blocks implementation can be extended to a 2D convolution implementation
with very little effort as shown in Image Convolution section.

Image Convolution
The C code below performs image convolution with a generic kernel and zero boundary conditions:

Void convolution(float* intput, int width, int height,

 float* kernel, int kernel_width, int kernel_height, float* output)

{

 for (int y = 0; y < height; ++y) {

 for (int x = 0; x < width; ++x) {

 float temp = 0;

 for (int i = 0; i < kernel_height; ++i) {

 for (int j = 0; j < kernel_width; ++j) {

 int yp = y + i - kernel_height / 2;

 int xp = x + j - kernel_width / 2;

 if (yp >=0 && xp >=0 && yp < height && xp < width) {

67

Porting C Code to Intel® Array Building Blocks 6

 temp += input[yp * width + xp] * kernel[i * kernel_width + j];

 }

 }

 }

 output[y * width + x] = temp;

 }

 }

}

It can be easily ported to Intel® Array Building Blocks (Intel® ArBB) code: allocate dense<T, 2> with the given
shape and add shift. Since the size of the input and the kernel can be obtained from the dense containers there
is no need to provide those values. Red color shows the difference between C and Intel ArBB code:

void arbb_convolution(dense<f32, 2> input, dense<f32, 2> kernel, dense<f32, 2> & output)

{

i32 kernel_width = kernel.num_cols();

i32 kernel_height = kernel.num_rows();

dense<f32, 2> temp = fill(f32(0), input.num_cols(), input.num_rows());

_for (i32 i = 0, i < kernel_height, ++i) {

_for (i32 j = 0, j < kernel_width, ++j) {

 temp += shift(input, j - kernel_width / 2, i - kernel_height / 2) * kernel(j, i);

 } _end_for;

 }_end_for;

 output = temp;

}

68

6 Intel(R) Array Building Blocks for Linux* OS User's Guide

AEnvironment Variables

You can set the environment variables to control the execution of the Intel® Array Building Blocks (Intel® ArBB)
software.

Intel ArBB Environment Variables

ValuesEnvironment Variable

O0 , O2 or O3ARBB_OPT_LEVEL

1/y or 0/nARBB_VERBOSE

1/y or 0/nARBB_TRT_VERBOSE

n - specifies the max number of cores used by the
software

ARBB_NUM_CORES

N - specifies the number of tasks for each parallel
region

ARBB_DECOMP_DEGREE

"TREE_SPAWN_REFCT_JOIN",
"TREE_SPAWN_FGDEP_JOIN",
"TREE_SPAWN_TREE_JOIN",
"LINEAR_SPAWN_FGDEP_JOIN"

ARBB_SPAWN_JOIN_MOD

"itt", "tp", "cm", "cm_itt", "cm_tp",
"cmenh", "ittenh", "tpenh", "cm_ittenh",
"cm_tpenh","cmenh_itt", "cmenh_tp"

ARBB_PROF

initial heap sizeARBB_INIT_HEAP

maximum heap sizeARBB_MAX_HEAP

"1"/"y" or "0"/"nARBB_DUMPJIT

[-]oobcheck, [-]scatter_index_checkARBB_JIT_OPTIONS

[-]immediate_copy_in

[-]allow_fma_fusing

[-]allow_fp_reassoc

69

ValuesEnvironment Variable

special run-time optionsARBB_RT_OPTIONS

0-2ARBB_EXCEPTION_MODE

ARBB_OPT_LEVEL

Sets the level of optimization. O0 enables no runtime optimizations, and uses interpretations. O2 enables
vectorization. O3 enables vectorization and thread parallelization.

The default value of ARBB_OPT_LEVEL is O2.

ARBB_VERBOSE

When ARBB_VERBOSE is turned on, the Intel ArBB compiler/runtime displays information that is related to
execution traits and performance.

ARBB_TRT_VERBOSE is a special case of ARBB_VERBOSE, focused only on the threading runtime.

ARBB_PROF

When ARBB_PROF is set to a value that includes itt or tp, thread profiling is enabled. Information is collected
during the runtime that may be viewed with VTune"™s thread profiling facilities. When it is set to a value that
includes cm, the software counter monitoring facilities are enabled. There are enhanced versions of each of these,
indicated by a enh suffix , which turns on enhanced functionality.

ARBB_INIT_HEAP, ARBB_MAX_HEAP

Specifies the heap sizes. They must be a decimal number with a suffix in the set {k, K, m, M}.

ARBB_DUMPJIT

When ARBB_DUMPJIT is turned on, the Intel ArBB compiler dumps the intermediate representations and generated
code with different optimization levels in the working directory.

ARBB_JIT_OPTIONS

You can turn on or off some optimization options by setting the ARBB_JIT_OPTIONS variable. These settings
override the default set specified by the ARBB_OPT_LEVEL variable. If a "-" precedes a setting, it turns off the
option.

The possible values of the ARBB_JIT_OPTIONS variable:

oobcheck - turn on the bounds checks for scatter/gather operations.

scatter_index_check - turn on the index duplication checking for scatter indices, to limit non-determinism.

NOTE. This checking may take a long time, use this option only to debug for correctness.

immediate_copy_in - turn on the copy_in operator to do an immediate copy instead of lazy copy to enforce
greater separation between the C/C++ and Intel ArBB data spaces .

Binding constructors do not support this option .

ARBB_RT_OPTIONS

Specifies one or more runtime options. Now only one option is supported: initial and maximum heap size settings.
For example, ARBB_RT_OPTIONS=AMM:init=96m|max=96m. init and max must be lower case.

ARBB_EXCEPTION_MODE

70

A Intel(R) Array Building Blocks for Linux* OS User's Guide

Specifies exception modes: 0 throws an exception, 1 only prints it, and 2 both prints and throws the exception.

71

Environment Variables A

72

A Intel(R) Array Building Blocks for Linux* OS User's Guide

Index
A
accessing dense containers 44
application programming interface 15

B
binding dense containers 44

C
complex numbers 41
configuring development environment 33
control flow 40

D
debugger integration

GNU debugger 34
introduction 34

dense container
binding and accessing 44
operations for 46
rearranging 47
using 43

determinism 16

E
environment variables 69
error handling 59

F
filling with patterns 49
functions 39, 51

calling 39
writing 39

G
gather 48, 49

H
high performance virtual machine 15

M
mask operations 48

N
nested containers 49, 50

creating 49
operations 49
rearranging 50

O
operators

reduction operators 51
optimization level 17

P
porting C code 61
porting example

binomial tree 63
Black-Scholes 61
computing Pi 62
dot product 61
general convolution 66
image convolution 67
Monte Carlo Poisson solver 64

programming model 15

R
rearranging

nested containers 50
rearranging dense containers 47
reduction operators 51
runtime errors 59
runtime exceptions 59

73

S
safety 16
sample applications 21, 22, 23, 24

about 22
browser 24
building 22
performance 23
running 22
using 22

scalar types 37
scatter 48
small arrays 41
specializing computations with closures 55

T
tutorials 21

about 21
building 21
running 21
using 21

types
scalar 37

U
using dense container 43

W
writing and calling functions 39

74

Intel(R) Array Building Blocks for Linux* OS User's Guide

	Intel(R) Array Building Blocks for Linux* OS
	Legal Information
	Contents
	What's New
	Getting Support
	Notational Conventions
	Displaying Pseudocode

	1. Getting Started with Intel® Array Building Blocks Software
	Intel® Array Building Blocks Basics
	Intel® Array Building Blocks Usage
	Data Types
	Safety
	Determinism

	Some Definitions

	Steps to Get Started
	Checking Your Installation
	Setting Environment Variables
	Writing Programs Using Intel® Array Building Blocks

	2. Intel® Array Building Blocks Package Structure
	High-Level Directory Structure
	Contents of the Documentation Directory

	3. Intel® Array Building Blocks Sample Code
	Using Tutorials
	About Tutorials
	Building and Running Tutorials

	Using Sample Applications
	About Sample Applications
	Building and Running Sample Applications
	Understanding Sample Performance
	Sample Browser

	4. Configuring Your Development Environment
	Creating an Intel® Array Building Blocks Project on Linux* OS
	Debugger Integration
	GNU Debugger Integration

	5. Programming with Intel® Array Building Blocks
	Writing Simple Functions Using Scalars
	Scalar Types
	Writing and Calling Functions
	Control Flow
	Complex Numbers and Small Arrays

	Adding Parallelism with Containers
	Using Dense Containers
	Binding and Accessing Dense Container Data
	Dense Container Operations
	Rearranging Dense Containers
	Gathering and Scattering
	Mask Operations
	Filling Dense Containers with Patterns

	Nested Containers
	Nested Container Operations
	Creating Nested Containers from Dense Containers
	Rearranging Nested Containers

	Reductions and Scans

	Adding Parallelism Using map()
	Using the map() Function

	User-defined Types
	Overview of User-defined Type Support
	Rules for User-defined Types
	Declaring Functions on User-defined Types

	Specializing Computations with Closures
	Using Closures with arbb::call()
	Closure Capture
	Run-time Specialization Using Closure Capture
	Closure Type Safety and Auto Closures

	Error Handling
	Run-time Exceptions

	6. Porting C Code to Intel® Array Building Blocks
	Dot Product
	Black-Scholes
	Computing Pi
	Binomial Tree for Options Pricing
	Monte Carlo Poisson Solver
	General Convolution
	Image Convolution

	A. Environment Variables
	Index

