Home > Articles

Submit New Art

Complex Support with Array Building
Blocks

Let’shave aregular C++ array of complex:

std::vector<std::complex<float>> vf;

Then, let’s have an ArBB dense of complex:

dense<std::complex<f32>> f;

The naive way of binding ‘af’ to ‘vf’ is.

bind(af ,& vf[O],vf.size());

But thiswill *not* work. If we look up the template definition of bind, it saysthe first parameter of bind must k
ArBB dense container of some ArBB scalar type, for example, dense<T>. Then, the second parameter of bind

be a pointer to uncaptured<T>

If Tisf32, then uncaptured<T> isfloat
If T isi64, then uncaptured<T> isint64_t, and so on.

Bu t then how to you bind a series of complex valuesto an ArBB dense complex? In many cases complex is
represented as a pair of two floats.

However if T is std::complex<f32> then uncaptured<T> is NOT std::complex<float> because in this case, both
and uncaptured<T> are of std::complex type. Another way to understand thisis that there does not exist an
uncaptured<T> for std::complex<f32>.

How does one do the binding then?

std::complex type isnot treated as a ‘scalar’ type in ArBB. Therefore, the intuitive version of bind()does not wt
for it. We have to use two C/C++ arrays, one for the “real” part and the other for the “imag” part. Then, we ha
pass pointers to both arraysto bind().

Full Solution:

typedef std::complex<f32> ArBBComplex;

std::vector<float> f_real(SZE);
std::vector<float> f_imag(SlZE);



/I fill in some test data
std::fill(f_real.begin(), f_real.end(), 1.0);
std::fill(f_imag.begin(), f_imag.end(), -1.0);

dense<ArBBComplex> a f;
bind(a_f, SZE, &f rea[Q], &f _imag[Q]);

So far, thisis the best known way to achieve binding. However, our engineering team is working on improving 1
interface, making it more intuitive and straightforward. Please communicate with us through the forum on any
requests or suggestions to improve the binding to complex numbers.

Do you need mor e help?

Click tagslinksfor related articles
Search Knowledge Base

Vist User Forums

Get other Support options

Thisarticle appliesto: Intel® Array Building Blocks Knowledge Base

*Trademarks

©Intel
Corporation



