
Home › Articles

Let’s have a regular C++ array of complex:

std::vector<std::complex<float>> vf;

Then, let’s have an ArBB dense of complex:

dense<std::complex<f32>> af;

The naïve way of binding ‘af’ to ‘vf’ is:

bind(af,&vf[0],vf.size());

But this will *not* work. If we look up the template definition of bind, it says the first parameter of bind must be an
ArBB dense container of some ArBB scalar type, for example, dense<T>. Then, the second parameter of bind must
be a pointer to uncaptured<T>

If T is f32, then uncaptured<T> is float
If T is i64, then uncaptured<T> is int64_t, and so on.

Bu t then how to you bind a series of complex values to an ArBB dense complex? In many cases complex is
represented as a pair of two floats.

However if T is std::complex<f32> then uncaptured<T> is NOT std::complex<float> because in this case, both T
and uncaptured<T> are of std::complex type. Another way to understand this is that there does not exist an
uncaptured<T> for std::complex<f32>.

How does one do the binding then?

std::complex type is not treated as a ‘scalar’ type in ArBB. Therefore, the intuitive version of bind()does not work
for it. We have to use two C/C++ arrays, one for the “real” part and the other for the “imag” part. Then, we have to
pass pointers to both arrays to bind().

Full Solution:

typedef std::complex<f32> ArBBComplex;

std::vector<float> f_real(SIZE);
std::vector<float> f_imag(SIZE);

Complex Support with Array Building
Blocks

Submit New Article



// fill in some test data
std::fill(f_real.begin(), f_real.end(), 1.0);
std::fill(f_imag.begin(), f_imag.end(), -1.0);

dense<ArBBComplex> a_f;
bind(a_f, SIZE, &f_real[0], &f_imag[0]);

So far, this is the best known way to achieve binding. However, our engineering team is working on improving the
interface, making it more intuitive and straightforward. Please communicate with us through the forum on any
requests or suggestions to improve the binding to complex numbers.

Do you need more help?
Click tags links for related articles
Search Knowledge Base
Visit User Forums
Get other Support options

This article applies to: Intel® Array Building Blocks Knowledge Base

©Intel
Corporation

*Trademarks


