
Home › Articles

Introduction
Version
Application Notes
Prerequisites
Add the Debugger Integration
Remove the Debugger Integration
Basic Usage
Known Issues and Limitations

Introduction :

This article explains debugger integration for Intel(R) ArBB in a Microsoft* Visual C++* IDE. It also demonstrates
the basic usage of the debugging facility.

Version :

Intel® Array Building Blocks 1.0 Beta 1 for Windows* OS

Application Notes :

The debugger integration allows programmers to inspect the content of Intel® Array Building Blocks containers
using Microsoft* Visual C++* debugger. The Intel(R) ArBB installation process on Windows* OS does not install
this feature automatically. Users have to manually add this feature following the instructions in this article.

Prerequisites :

Intel® Array Building Blocks 1.0 Beta 1 product must be installed. For information on how to get and install
Intel(R) ArBB software on Windows* platform, refer to this KB article.

One of the following supported Microsoft* Visual C++* IDE products must be installed:

Microsoft* Visual C++* 2005 SP1
Microsoft* Visual C++* 2008

Debugging Intel(R) Array Building
Blocks Programs in Microsoft* Visual
Studio*

Submit New Article



Microsoft* Visual C++* 2010

Add the Debugger Integration:

To enable this integration, go to start -> All Programs -> Intel(R) Software Development Tools -> Intel(R)
Array Building Blocks 1.0 Beta 1, then click Add MSVC Debugger Integration, as shown in the picture below:

This will run a Windows* script that needs to modify a restricted area (the Program Files folder). So you may be
prompted a Run As dialog box as shown below. Be sure to uncheck the system protection box before click OK
Otherwise, the installation will fail.



If the installation is successful, you will see a confirmation like this:

Remove the Debugger Integration:

To disable the integration, click Remove MSVC Debugger Integration from the same menu, as shown in the
picture below:



Again, you may be prompted a Run As dialog box as shown below. Be sure to uncheck the system protection box
before click OK. Otherwise the uninstallation will fail.



If the uninstallation is successful, you will see a confirmation like this:

Basic Usage:

Inspecting Intel® ArBB scalar variables: Scalars can be viewed in several ways. The following examples
assume "global_scalar" is an i8 type variable.

The user can hold the cursor over a scalar variable until a "SmartTag" appears, as shown in this picture1.

The user can right-click on the variable and select "Quick Watch" from the pull-down menu, as shown
in this picture

2.



The variable can also be displayed in the "Autos", "Locals" or "Watch" debug windows, as shown in
this picture

3.

Inspecting Intel® ArBB containers: Certain high-level information (e.g. the length) of a container, as well as
the individual members of the container, can be displayed. The following examples assume "g0" is an 1D
dense container of i64 type, and "g2" is a 2D dense container of i64 type.

Before g0 is initialized, it looks like this1.

After it has been constructed, but before it contains any data, it looks like this2.



After it has been filled with data, it looks like this3.

For a 2D or 3D dense container, the size of each dimension is shown in the "columns", "rows" or
"pages" values. The individual members of the container are shown as a flat array as if the container is
flattened in the row-column-page order. This may be improved in future releases. The picture below
illustrates how a 2D dense container (g2) is displayed:

4.

A nice feature of the debugging support is that it can be used to show the AoS-to-SoA conversions that
Intel® ArBB performs on the containers of structured types. The following example shows that a 1D
dense container (g5) of length 32. Each of its element is a 5-field struct type. Each field is an i64 type
integer. As we can expect from the AoS-to-SoA conversion, fields of the struct type are scattered into
different containers. Here we see the original dense container is split into 5 containers, each containing
values corresponding to one of the five fields of the original struct type.

5.



It is also possible to print Intel® ArBB variables in the Visual Studio* "Command" and "Immediate"
windows. However, in the case of dense containers, you have to specify a couple of member variables
to get to the container level. For instance, if there is a dense container, db, containing booleans, you
have to specify db.m_members.m_data to show the content of the container:

6.

Known Issues or Limitations:

The debugger can only be used to inspect Intel® ArBB scalars and containers whose elements are of built-in
types, such as i32 and f64. It does not work well with containers whose elements are of user-defined types.

1.

The debugger only works for the emulation mode. That is, the Intel® ArBB optimization level must be set to
O0 using the environment variable ARBB_OPT_LEVEL. Programs with big input size may run very slow or
even crash in this mode.

2.

 

Do you need more help?
Click tags links for related articles
Search Knowledge Base
Visit User Forums
Get other Support options


