
Home › Articles

Overview

To help jum pstart your application development, we provide code samples that illustrate the use of Intel® Array
Building Blocks in various workloads including those often used for financial services, graphics, image processing,
medical imaging and more. The sample applications provide the most direct way to determine:

Whether the software is working on your system
How you can use the different language constructs (for example, operators, functions, facilities and so on)
How to write code and create an application

Installation

The code samples are contained in the installation package and by default are installed to

Windows* directory C:\Program Files\Intel\arbb\<version>\samples
Linux* directory /opt/intel/arbb/<version>/samples

where <version> is the version of the product being installed.

Building and Running the Samples

On Windows*, open one of the Microsoft* Visual Studio* solution (.sln) files located in the samples folder. For
examples, if you use Visual Studio 2005, double-click the file C:\Program Files\Intel\arbb\<version>\samples
\samples-vs05.sln.

Select a configuration (the default setting is Debug - Win32 configuration)1.
From the Build menu, select Build Solution to build the entire solution, which consists of individual projects
for each sample. Use the Solution Explorer to view projects grouped in folders by category.

2.

In the Solution Explorer, right-click the name of the sample you are interested in and choose the Set as
StartUp Project option from the context menu.

3.

Click the Run button to run the selected sample.4.

On Linux*, use one of the following shell scripts, located in the folder /opt/intel/arbb/<version>/tools, to build and
run the samples:

Intel(R) Array Building Blocks Code
Samples

Submit New Article



build_run-icc.sh - automatically build and run the sample applications using Intel® C++ Compiler
build_run-gcc.sh - automatically build and run the sample applications using GCC*

Known Issues

The problem size for some samples (for example, graphics/raytracing1) is too small to get meaningful
performance measurement. Users need to manually set a big enough problem size to be able to see a
reasonable speedup.

Detailed Description

Sample Description Algorithm Implementation

Category: finance

binominal-tree Numerical lattice for pricing
European options.

Stream of option pricing
evaluations with high
arithmetic intensity (exp,
sqrt)

.

(1) A map to parallelize over pricing
multiple options. Uses a series of
_for loops for each time step and
calls replace() on elements of local
(temporary) containers as well as
containers for output of the option
prices.

black-scholes Analytical method for
pricing European options.
Optionally evaluates or
approximates polynomials.

Data-parallel random
number generation using
scan. Option stream with
arithmetic intensity (ln, exp,
sqrt).

(1) Uses the call operator to inline
an Intel ArBB function whose outer
loop parallelizes over options.
Illustrates the use of select to
choose between two terms during
polynomial evaluation.

monte-carlo Stochastic method for
computing financial options
using the Blackscholes
formula given randomly
varying prices. Can
optionally generate the
sequence of random
numbers using a
multiplicative congruential
generator (MCG).

Data-parallel random
number generation using
scan. Option stream with
arithmetic intensity (exp).
1D and 2D accumulation
(reductions).

(1) Uses the call operator to invoke
an Intel ArBB function whose outer
loop parallelizes over options.
Generates a normally distributed
random sequence using a
transformation of a uniform random
sequence. Uses a nested _for loop
over prices to perform 1D vector
arithmetic, and uses add_reduce
and replace to accumulate a result.

(2) Uses reshape and repeat_col
perform an equivalent 2D
implementation. Illustrates the use
of add_reduce for accumulation.



Sample Description Algorithm Implementation

poisson-solver Monte-Carlo method to
solve Poisson functions
(MCP solver). Uses a
sequence of random
numbers from a linear
congruential generator
(LCG).

Data-parallel random
number generation using
scan. Kernel with nested
loops and high arithmetic
intensity (sin, cos).
Minimum distance
computation using a series of
thresholds in the inner loop.
Unbalanced load where the
number of iterations depends
on random input.

(1) Uses the call operator to
generate a large vector of scalar
random numbers. Followed by a
map over points illustrating nested
_for and _while loops for a random
walk. The inner loop is a series of
_if statements to compute a
minimum distance. (2) Equivalent
implementation using map to
perform scalar arithmetic.

randomlib Code that can be in-lined to
generate a normally
distributed random
sequence using the
following algorithms:

 

Linear Congruential
Generator (LCG)

Multiplicative
Congruential
Generator (MCG)

 

 

Combined multiple
recursive generator
with two components
of order 3 (MRG)

Generalized feedback
shift register
generator (R250)

 

Mersenne twister (MT)

Data-parallel random
number generation using
scan.

Scan collectives, bitwise
operations

(MCG) Uses the call operator to
invoke native code stubs from
within an Intel ArBB function. The
actual native implementation can be
switched at link time.

(General) Use of mul_scan to
generate indices. Illustrates the use
of rotate and select on seeds.
Illustrates the use of a bitwise &
operation (a mask) to simulate a
vector modulus operation.

Category: graphics

*Trademarks



Sample Description Algorithm Implementation

raytracing1 A kernel used to create a
realistic visualization of a
scene when tracing rays
from a camera through an
image plane to a light
source. For each pixel in a
2D array, the kernel
determines the closest
ray-triangle intersection and
evaluates the pixel shade
using a lighting calculation.

This implementation is
brute-force and does not
use an accelerator: every
ray is compared to every
triangle.

For each triangle in the
scene, compute the
intersection and distance to
triangle. Compute the
minimum distance and shade
the triangle closest to the
camera.

A simplified lighting
calculation is given by a
proportional sum of diffuse,
specular and ambient light.

The ray tracing algorithm is
parameterized over
1-component or
2-component inputs and
outputs.

(1) Uses the call operator over a 2D
pixel array. Within the call body, a
_for loop over the height of the
pixel array is performed. For each
row, a map over 1D lines of pixels is
performed. Illustrates the use of
index to generate an arithmetic
sequence and replace_row to
populate rows of the 2D outputs.
Uses at to extract a one-component
array from an N-component array

(2) An equivalent map over a 2D
pixel array is performed. Illustrates
the use of index to generate a 2D
sequence.

Note: The bulk of the
implementation differs only in the
use of scalars versus 2-tuples for
positions and directions. Therefore,
ray tracing is parameterized over
different data types.

(3) A variation on (2) using
3-component tuples and large
vectors of 3-component tuples
instead of separate variables (i.e. for
RGB and XYZ). Illustrates the use
of get and set for components of a
tuple

raytracing2 A variation on raytracing1
where ray-triangle
intersection is limited to
triangles in grid cells that
intersect with rays. In other
words, a uniform spatial
partition is used for
acceleration.

A variation on raytracing1
where the triangles are
indexed by a uniform grid
accelerator to limit the
number of triangle-ray tests
that are required.. For each
cell in a 3D grid, an initial
test is performed to
determine if the ray
intersects the cell.
Ray-triangle intersection is
performed only when rays
intersect grid cells.

(1-3) See (1), (2) and (3) for
raytracing1.

Note

Uses _break to perform an early
exit from a _for loop or a _while
loop.



Sample Description Algorithm Implementation

Category: image processing

convolve Convolution of a 2D image
with a discrete Gaussian
function.

A local gather over a fixed
neighborhood around each
pixel of a 2D image.

1D convolution along X and
Y axis of a pre-computed 2D
stencil of coefficients.

Clamps output to 255 to
prevent saturation of the
8-bit unsigned image data.

Optionally runs with
convolution stencils of 5x5
or 9x9 pixels.

(1) Uses the call operator to
implement separable convolution
using large vector math. Calls shift
to perform vector arithmetic on
neighbors. Optionally performs an
averaging filter.

(2) A variation on (1) with manual
unrolling rather than _for loops for
separable convolution. Only works
with a 5x5 pixel convolution stencil.

(3) A map operation using nested
_for loops to perform convolution.
Calls num_rows on the 2D stencil
to operate on square kernels of any
size.

(4) This tuned version casts the
unsigned image data to single-
precision float. Next, a _for loop is
performed over 64-pixel wide strips
of the image. For each block, nested
for loops are used to unroll the
convolution. Uses section
andreplace to operate on a 64-pixel
wide strip of the image. This is
followed by a similar loop to process
the portion of the image that does
not fit into strips of 64 pixels.

gauss-convolve Convolution of a 2D image
with a discrete Gaussian
function.

Similar to convolve. Uses
different stencil sizes and
does not assume odd stencil
sizes.

(1) Two _for loops to perform
separable convolution using large
vector math. Uses shift_row and
shift_col for the 1D convolution
along X and Y axis.

(2) Equivalent implementation using
map to perform scalar arithmetic.
Illustrates in-lining of multiple C++
routines (one for each axis) into a
single Intel ArBB function.



Sample Description Algorithm Implementation

sobel An edge detection filter for
a 2D image that uses the
gradient (rate of change) of
image intensities.

A gather over a fixed
neighborhood around each
pixel of a 2D image.
Separately computes the
gradient along the X and Y
axes. This variation on a
Sobel filter outputs the
largest of the two gradients
(with clamping to avoid
saturation of 8-bpp image
data).

(1) Uses call to invoke an Intel
ArBB function that in turn inlines
separate functions to compute the
gradient in X and Y using large
vector arithmetic. Calls shift to
perform vector arithmetic on
neighbors.

(2) Equivalent implementation using
map to perform scalar arithmetic.

Category: medical

3D-dilate A morphological operator
for dilation applied to 3D
grayscale images.

Loops over a neighborhood
defined by a 3D binary mask
(structuring element). For
each neighbor corresponding
to a non-zero mask entry,
the image is updated with
the largest difference
between the neighbor and a
height field matrix. Features
are dilated when voxels
neighboring the structuring
element are incorporated
(assigned similar intensities).
The height matrix provides
intensities for non-flat
structuring elements.

(1) Three nested _for loops are used
to iterate through the mask. A call to
create makes a local buffer to store
maximums. Calls shift to perform
vector arithmetic on neighbors. Calls
num_cols, num_rows and
num_pages to operate on a mask of
arbitrary size.

3D-Erode A morphological operator
for erosion applied to 3D
grayscale images.

Similar to 3D-dilate, except
that the smallest difference
is output.

Similar to 3D-dilate. Uses
min_reduce.

3D-gauss-
convolve

Convolution of a 3D image
with a discrete Gaussian
function.

Similar to guass-convolve,
except that a 3D convolution
stencil is applied to 3D
image data.

Similar to guass-convolve. Uses
shift_page in addition to shift_row
and shift_col to handle the Z axis.

back_projection A technique for image
reconstruction used with
inputs from computed axial

A spatially-coherent gather
along projections (rays)
through each pixel of a 2D

(1) Uses the call operator to
parallelize over pixels in the 2D
output image. Uses a _for loop in



Sample Description Algorithm Implementation
tomography (CAT) scans. image.

Applies the inverse Radon
transform to reconstruct a
2D image given a set of
projections through that
image. Uses 1D interpolation
to update the output image
with the contribution from
the nearest projections.

 

Note

A simple scan geometry is
assumed (radically
symmetric 1D orthographic
projections rather than a
helical scan).

 

In addition, it is assumed that
sharpening of sets of input
projections (sinograms) has
already been performed.

the call body to iterate through
projection angles. Uses a table
lookup to compute the sin and cos
of each projection angle. Calls floor
and ceiling on large vectors prior to
interpolation. Uses the += operator
to integrate contributions.

(2) A variation on (1) that uses
reshape to create a 2D product of
angles and projections rather than a
packed 1D vector. Within the call
body, the indexing is modified to
perform a 2D gather using a
two-component index.

Category: misc

mandelbrot Fractal data set generation. Iteratively applies a
quadratic polynomial map
over complex numbers and
computes it escape time to
compute a fractal set.

(1) Uses a_for loop in a map
operator to iteratively refine the
output. Uses the complex numbers
(using std::complex over Intel ArBB
floating-point types) to perform
complex multiplication and addition.
Calls abs to compute the complex
norm, and uses _break to exit early
when the hard-coded bounds are
exceeded.

(2) An alternative implementation
using a _for loop in a call operator.
Creates a large vector that is local to
the Intel ArBB function, complex
and 2D. Performs a fixed number of
iterations, and stops updating the
output when the fractal bounds have



Sample Description Algorithm Implementation
been exceeded (this performs more
work than the version (1) using an
early exit).

spec-samples Calling code that details the
behavior of various Intel
ArBB operations on dense
and nested containers. The
operations are divided into
three categories:

 

Collectives used for
reductions and scans.

Facilities for building
and querying the
structure of nested
data containers.

Operations on dense
and nested
containers,
permutation
operations on
elements or nested
segments of
containers.

 

(1) Full and partial collective
operations are performed.
The partial collectives
reduce the dimensionality of
the input set rather than
returning a single value.
Collective operation is
illustrated using dense and
nested containers.

(2) Illustrates the reshaping
of dense containers as nested
containers, flattening of
nested containers, and
split/unsplit/cat operations.
Also shows how to extract
sizes of dense containers and
nested segments.

(...2) Illustrates the creation
and initialization of large
vectors and index sets. Also
shows how to section large
vectors and update sections
of large vectors.

(3) Permutes data using
swizzle, pack, shift, rotate,
sort and shuffle operations.
Many of these operations
have inverses, such as
pack/unpack.

(1) The calling code, inputs and
outputs are detailed for full/partial
reductions using add_reduce, as
well as exclusive and inclusive scans
(add_scan and add_iscan).

(2) Uses reshape_nested_lengths
generate nested vectors from dense
vectors based on segment
descriptors. Couples this operation
with a type cast using reshape_as
Calls split, unsplit and cat with
inputs and/or outputs that are nested
containers.

(...2) Calls value, lengths, flags and
offsets to extract information about
nested containers.

(...2) Calls create for large vectors
and illustrates the construction of
index sets. Uses section and replace
to operate on pieces of large
vectors.

(3) Performs swizzle, mask,
pack/unpack and scatter operations
on large vectors using large vectors
to specify the output indices.

(...3) Calls shift, shift_sticky and
rotate with options to permute
dense and nested containers both
left and right. Note that full
segments of nested containers can
be permuted.

(...3) Calls sort to perform direct
and indirect sorts on dense
containers.

(...3) Calls shuffle/unshuffle to
perform strided interleave/de-
interleave of dense containers.

(...3) Shows how to use repeat and



Sample Description Algorithm Implementation
repeat_row variants to replicate
data in dense containers.

Category: seismic

3dstencil Convolution used in reverse
time migration (RTM).

Convolution using a 7x7x7
cross-shaped kernel.

(1) Uses the map operator to
perform scalar arithmetic. Uses
relative indices to gather values of
neighbors.

convolution 1D and 2D convolution for
a seismic image.

Separable 2D convolution
using a cross-shaped kernel.

(X) Uses the call operator to
implement 1D convolution on the
x-axis between a seismic trace and a
large array of weights. Calls shift
access neighbors within a _for loop
to perform convolution with an
arbitrarily sized array of weights.
Uses create to generate a large
vector output of any specified size.

(Y) An equivalent operation on the
Y axis performed on half of the
input data set.

(2D) Uses the call operator to
perform a 2D convolution with a
cross-shaped stencil of fixed size.
Uses shift_sticky to perform vector
arithmetic with neighbors using a
zero-flux assumption for out-of-
bounds accesses (clamped to the
nearest boundary value). Uses a
stride of 2 on the x-axis when
gathering neighbors.

kirchhoff Generic Kirchhoff
migration assuming
constant velocity of seismic
waves through a
sub-surface.

Accumulates the
contributions of each seismic
trace to a sub-surface
reconstruction. Uses a
constant velocity model
where the time from source
to receiver is proportional to
the distance between the
source and receiver. Uses
the equation of a circle to

(1) Uses the call operator to
implement migration with large
vector arithmetic. Uses create to
allocate a large vector output.
Constructs sets of indices<> with
the user-specified resolution. Uses a
_for loop to parallelize over circle
centers. Uses a select statement to
perform a boundary check.



Sample Description Algorithm Implementation
determine the possible
reflection points. Uses
correlation between multiple
source-receiver pairs to
identify the location of the
reflecting sub-surface.

(2) A 2D variation on (1) where the
output and index sets are 2D X-Z
datasets. Uses repeat_col and
repeat_row to generate the 2D
index sets. Uses create to initialize a
2D large vector containing
two-component tuples used to
perform a gather. Specifically, the
2-tuples are used to index the trace
data to determine the appropriate
contribution for the output
reconstruction.

Do you need more help?
Click tags links for related articles
Search Knowledge Base
Visit User Forums
Get other Support options

This article applies to: Intel® Array Building Blocks Knowledge Base


