
Home › Articles

Intel® Array Building Blocks (Intel® ArBB) provides loop constructs such as _for, _while, and _do/_until. These
are similar to the for, while, and do/while loops in C/C++. Users sometimes get confused as to when to use the Intel
ArBB loops and when to use the regular C/C++ loops. Users who are familiar with the "parallel for" loops in
OpenMP* and Intel® Threading Building Blocks may also have some incorrect assumptions about Intel ArBB's
loop constructs, especially about the _for loops. This article uses the _for loops as an example to illustrate the
proper usage of Intel ArBB loop constructs.

You cannot use _for loops for parallel execution.

The most important thing to note is that _for loops (and all other loop constructs in Intel ArBB) are regular serial
loops. Iterations of a _for loop are executed sequentially. Intel ArBB does not auto-parallelize _for loops, nor does
it provide a "parallel for" loop construct. You cannot use _for loops to express data parallelism. The correct way to
express data parallelism in Intel ArBB is to use container operations and/or the arbb::map() function.

As a simple example, consider the problem of multiplying a matrix with a vector. Here is an Intel ArBB
implementation that works but does not have any parallelism:

- collapse sourceview plaincopy to clipboardprint?

void matvec_product(const dense<f32, 2>& matrix, const dense<f32>& vector, dense<f32>& result) 1.
{ 2.
 usize rows = matrix.num_rows(); 3.
 usize cols = matrix.num_cols(); 4.
 _for (usize i = 0, i < rows, ++i) { // SERIAL LOOP 5.
 f32 sum(0.0); 6.
 _for (usize j = 0, j < cols, ++j) { // SERIAL LOOP 7.
 sum += matrix(j, i) * vector[j]; 8.
 } _end_for 9.
 result = replace(result, i, sum); 10.
 } _end_for 11.
} 12.
 13.

Except for the use of Intel ArBB types, operators and keywords, this code looks very similar to the serial C
implementation. However, just like the C version, it runs sequentially. This is not the right way to compose an
efficient parallel program using Intel ArBB.

When, and when not, to use the Intel
ArBB _for loops

Submit New Article

A much better implementation that shows the simplicity of Intel ArBB syntax and expresses the intrinsic parallel
nature of the algorithm looks like this:

- collapse sourceview plaincopy to clipboardprint?

void matvec_product(const dense<f32, 2>& matrix, const dense<f32>& vector, dense<f32>& result) 1.
{ 2.
 result = add_reduce(matrix * repeat_row(vector, matrix.num_rows())); 3.
} 4.
 5.

Notice the use of container operators instead of scalar operators, as well as the use of collective operators. Not only
is this code simpler, it also allows the Intel ArBB runtime to parallelize the computation through vectorization
and/or multithreading. It is also possible to express this algorithm using an arbb::map() function. To learn more
about how to express parallelism using Intel ArBB containers, container operators, and the arbb::map() function,
refer to this and this sections in the Intel ArBB User's Guide. Also, see the tutorials for more code samples.

When should you use _for loops?

The _for loop should be used in the following situations:

Inside Intel ArBB functions.
To express serially dependent iterative computation. This is the case where a computation must be done
incrementally, with the current step depending on the result of the previous step. A good example would be a
heat dissipation using an iterative stencil:

- collapse sourceview plaincopy to clipboardprint?
void apply_stencil(dense<f64, 2>& grid, i32 iterations) { 1.
 _for(i32 i = 0, i < iterations, ++i) { 2.
 map(stencil)(grid); 3.
 } _end_for 4.
} 5.
 6.
void stencil(f64& cell) { 7.
 arbb::array<usize, 2> coord; 8.
 position(coord); 9.
 usize x = coord[0], usize y = coord[1]; 10.
 _if(x != 0 && y != 0 && x != WIDTH-1 && y != HEIGHT-1) { 11.
 cell = 0.25 * (neighbor(cell, -1, 0) + neighbor(cell, 1, 0) + 12.
 neighbor(cell, 0, -1) + neighbor(cell, 0, 1)); 13.
 } _end_if 14.
} 15.
 16.

In this code, computing each stencil-based update step is parallelized through the use of the arbb::map()
function. But the updating must be done multiple times repetitively in a sequence in order to compute the
solution over time.

When should you use regular C/C++ for loops inside Intel ArBB code?

We have been so far concentrating on the usage of _for loops. Some users may now be wondering, why not just use
the regular C/C++ for loops inside Intel ArBB function to control repetitive execution? Is using regular C/C++
loops inside Intel ArBB functions permitted?

The answer is it is legal to use a regular for loop inside Intel ArBB code. In fact, it is often very useful, but it
executes at capture time, not at run time. Remember a regular for statement can only involve C/C++ types, since it
is a regular C/C++ statement. Such C/C++ statements inside Intel ArBB code also only get evaluated once at
capture time. Then its effects, which are frozen at the point of capture, are carried over to all subsequent Intel
ArBB executions. For a regular for loop whose body contains Intel ArBB statements, its effect is to unroll the loop
body by however many times it ran at capture time. This feature makes the regular for loop useful in creating
different computation specializations (i.e. different versions of a same Intel ArBB function with different unroll
factors). See the example below:

- collapse sourceview plaincopy to clipboardprint?

// A C/C++ int type 1.
int unroll_factor; 2.
 3.
// An Intel ArBB function 4.
void kernel(f32& a) 5.
{ 6.
 for (int i = 0; i < unroll_factor; ++i) { 7.
 stmt1(a); 8.
 stmt2(a); 9.
 } 10.
} 11.
 12.
int main() 13.
{ 14.
 // Create a closure that unrolls 4 times 15.
 unroll_factor = 4; 16.
 closure<void(f32&)> unroll_4 = capture(kernel); 17.
 18.
 // Create a closure that unrolls 8 times 19.
 unroll_factor = 8; 20.
 closure<void(f32&)> unroll_8 = capture(kernel); 21.
 22.
 23.
 24.
} 25.
 26.

One more thing ...

It is incorrect to write a _for loop like this:

- collapse sourceview plaincopy to clipboardprint?

*Trademarks

int i; 1.
_for (i = 0, i < n, ++i) { // WRONG! 2.
 3.
 4.
 5.
} _end_for 6.

To understand why this is wrong, consider the loop condition statement (i < n). Because the induction variable is a
C/C++ type, this loop condition statement returns a regular C/C++ bool type. However, the _for loop works with
only Intel ArBB types and it expects an arbb::boolean type here. The problem is actually more than type
mismatching. Consider the loop step statement (++i). This statement is C/C++ code rather than Intel ArBB code
because it involves only a C/C++ type. Remember that a C/C++ statement inside Intel ArBB code gets executed at
the capture time and its effects are "baked in" and won't change during the Intel ArBB execution. What this means
here is that the induction variable i is only incremented once and then stays unchanged! In fact, as far as Intel ArBB
is concerned, the arguments to the _for loop are empty. Intel ArBB can only capture computations expressed with
Intel ArBB types. To understand more about Intel ArBB's capture concept and the related closure concept, read
other two KB articles, here and here.

(Note: This should be an error at compile time. However, in the current beta version of Intel ArBB, this error is not
caught and no warning is issued. In fact, it triggers a bug in the ArBB beta that leads to a crash at O2 and O3,
although it works at O0. However, in summary, you should always use ArBB types as induction variables in _for
loops.)

Do you need more help?
Click tags links for related articles
Search Knowledge Base
Visit User Forums
Get other Support options

This article applies to: Intel® Array Building Blocks Knowledge Base

