(intel)'
Home > Articles

Debugging Intel(R) Array Building S e A
Blocks Programsin Microsoft* Visual
Studio*

| ntroduction

Version

Application Notes

Prerequisites

Add the Debugger Integration
Remove the Debugger Integration

Basic Usage
Known Issues and Limitations

I ntroduction :

This article explains debugger integration for Intel(R) ArBB in a Microsoft* Visual C++* IDE. It also demonstr
the basic usage of the debugging facility.

Verson:
Intel® Array Building Blocks 1.0 Beta 1 for Windows* OS

Application Notes:

The debugger integration allows programmers to inspect the content of Intel® Array Building Blocks container:
using Microsoft* Visual C++* debugger. The Intel(R) ArBB ingtallation process on Windows* OS does not indl
this feature automatically. Users have to manually add this feature following the instructions in this article.

Prerequisites:

Intel® Array Building Blocks 1.0 Beta 1 product must be installed. For information on how to get and ingtall
Intel(R) ArBB software on Windows* platform, refer to this KB article.

One of the following supported Microsoft* Visual C++* IDE products must be installed:

e Microsoft* Visual C++* 2005 SP1
e Microsoft* Visual C++* 2008

e Microsoft* Visual C++* 2010

Add the Debugger |ntegr ation:

To enable thisintegration, go to start -> All Programs-> Intel(R) Softwar e Development Tools-> Intel(R)
Array Building Blocks 1.0 Beta 1, then click Add M SVC Debugger Integration, as shown in the picture bel

—

i Intel(R) Software Development Tools v | [Int=l(R) Array Building Blocks 1.0Beta1 * | ,J Add

L]

"R

All Programs L

4 start ® -

— e o = o o .

Thiswill run aWindows* script that needs to modify a restricted area (the Program Files folder). So you may |
prompted a Run As dialog box as shown below. Be sure to uncheck the system protection box before click OK
Otherwise, the ingtallation will fail.

Uncheck this box!
& Whi

er account do you want to use to run this program?

() Cur ser

ct my computer and data from unauthorized program activity

This option can prevent computer viruses from harming your
computer or personal data, but selecting it might cause the program
to function improperly.

(O The following user:

| |

I OK][Cancel]

If the installation is successful, you will see a confirmation like this:

Windows Script Host @

ArBB extensions have been installed.

Remove the Debugger Integration:

To disable the integration, click Remove M SVC Debugger | ntegr ation from the same menu, as shown in the
picture below:

@ Intel(R) Software Development Tools » | & Intel(R) Array Building Blocks 1.0Beta 1 »

All Programs B

Again, you may be prompted a Run Asdialog box as shown below. Be sure to uncheck the system protection k
before click OK. Otherwise the uningtallation will fail.

@ Uncheck this box!
& Whi

er account do you want to use to run this program?

() Cur ser

ct my computer and data from unauthorized program activity

This option can prevent computer viruses from harming your
computer or personal data, but selecting it might cause the program
to function improperly.

(O The following user:

| |

I OK][Cancel]

If the uninstallation is successful, you will see a confirmation like this:

Windows Script Host @

ArBB extensions have been uninstalled.

Basic Usage:

¢ Ingpecting Intel® ArBB scalar variables: Scalars can be viewed in several ways. The following examples
assume "global_scalar” isan i8 type variable.
1. The user can hold the cursor over a scalar variable until a"SmartTag" appears, as shown in this pic

in‘-) global =scalar? = églc:hal =calarli;
[@ global_scalar1 99'¢' |
uncaptured type ret = wvalue (global scalar2?);

2. The user can right-click on the variable and select "Quick Watch" from the pull-down menu, as shc
in this picture

QuickWatch = (Sl

Expression: I Reevaluate
global_scalarl -

[Add Watch]

Value:

m
.1

| Close || Help

A

3. Thevariable can also be displayed in the "Autos', "Locals' or "Watch" debug windows, as shown
this picture

J Mame Yalue | Type

global_scalar1 arbb_2::scalar<(arbb_scalar_type_t)0>
i@ global_scalar2 0 arbb_2::scalar<(arbb_scalar_type_t)0:=
@ this 0x00295f10 {m_uncaptured="c' } test_fe_scalar<arbb_2::ig= *

IE Autos]@ Locals |45} Threads | Mndu|e5|Watch 1

¢ Ingpecting Intel® ArBB containers. Certain high-level information (e.g. the length) of a container, as wel
the individual members of the container, can be displayed. The following examples assume "g0" isan 1D
dense container of 164 type, and "g2" isa 2D dense container of 164 type.

1. Before gOisinitialized, it looks like this

J Mame Value | Type
w {m_members=[0]() } arbb_2::dense<arbb_2::scalar <(arbb_scalar_type_
[0 std:vector <arbb_2::detail::container, std::allocator

ﬁ m_members
@ this 0x010d75c0 {m_context={...} m_scalar test_arbb_cpp_dense <1, (arbb_scalar_type_t)0=

2. After it has been constructed, but before it contains any data, it looks like this

{m_members=[1](ArEE container, unitiall arbb_2::dense <arbb_2::scalar<(arbb_scalar_type_t]
é? m_members [1](ArBE container, unitialized) std::vector <arbb_2::detail::container, std::allocator -
W [0] ArBB container, unitialized arbb_2::detail: :container

3. After it has been filled with data, it looks like this

= @ gl {m_members=[1](ArBE container [32]) } arbb_2::dense<arbb_2::scalar <(arbb_scalar_type_t)(
=] _9 m_members [1](ArBE container [32]) std:ivector <arbb_2::detail;:container, stds:allocator <
— i columns 32 __inta4
— i pages 1 __inta4
i rows 1 __inte4
— i [0] 0 char
— @ [1] i char
— @ [] char
— @ [3] 1] char
— & 4] n rhar

4. For a2D or 3D dense container, the size of each dimension is shown in the "columns’, "rows" or
"pages’ values. The individual members of the container are shown as aflat array asif the contain
flattened in the row-column-page order. This may be improved in future releases. The picture belo
illustrates how a 2D dense container (g2) is displayed:

= @ g2 {m_members=[1](ArBE container [, 4]) arbb_2::dense<arbb_2::scalar<(arbb_scalar_type_th
=] Lf) m_members [1](ArBE container [8, 4]) std:rvector <arbb_2::detail: :container, std::allocator <
— i columns 3 __int&4
— @ pages 1 __int&4
— @ rows 4 __inta4
— @ [0] 0 char
— @ [1] 0 char
— @ [0 char
— @ [3] 0 char

5. A nice feature of the debugging support isthat it can be used to show the AoS-to-SoA conversions:
Intel® ArBB performs on the containers of structured types. The following example showsthat a1
dense container (g5) of length 32. Each of its element is a 5-field struct type. Each field isan i64 t\
integer. Aswe can expect from the AoSto-SoA conversion, fields of the struct type are scattered ir
different containers. Here we see the original dense container is split into 5 containers, each contai
values corresponding to one of the five fields of the original struct type.

| Mame | Value | Type
= @ g5 {m_members=[5](ArEE container [32], 41 arbb_2::dense<arbb_2::array<arbb_2::f32, 5U=, 1l
=] ;‘? m_members [5](ArBE container [32],ArBB container [std::vector <arbb_2::detail::container, std::allocator-
ArBB container [32] arbb_2::detail: :container
ArBB container [32] arbb_2::detail: :container
ArBE container [32] arbb_2::detail::container
ArBE container [32] arbb_2::detail::container
— i columns 32 __inta4
— i pages i __inte4
i Tows 1 __int64
— @ [0] 0,00000000 float
— @ [1 0.00000000 float
— @[3 0.00000000 float
— @ [3] 0,00000000 float

6. Itisalso possible to print Intel® ArBB variablesin the Visual Studio* "Command" and " Immediate
windows. However, in the case of dense containers, you have to specify a couple of member varia
to get to the container level. For instance, if there is a dense container, db, containing booleans, yc
have to specify db.m_members.m_data to show the content of the container:

Command Window

*? db

{m membara={_.__} }
m_members: {m_aize=l }

¥? db.m members.m data

ArBE container [8]
columns: 8

pages: 1

rows: 1

[0]: false
[1]: false
[2]: false
[3]: false
[4]: fal=se
[5]1: false
[6] - false

[7]1: false

Known Issuesor Limitations:

1. The debugger can only be used to inspect Intel® ArBB scalars and containers whose elements are of buil
types, such asi32 and f64. It does not work well with containers whose elements are of user-defined type

2. The debugger only works for the emulation mode. That is, the Intel® ArBB optimization level must be s
OO0 using the environment variable ARBB_OPT_L EVEL. Programs with big input size may run very sc
even crash in thismode.

Do you need mor e help?

Click tagslinksfor related articles
Search Knowledge Base

Vist User Forums

Get other Support options

