
11

Software and Services Group
Optimization

Notice

The Intel® Array Building
Blocks Virtual Machine

22

Software and Services Group
Optimization

Notice

Legal Information

• INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPETY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

• Intel may make changes to specifications and product descriptions at any time, without notice.

• All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

• Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to

deviate from published specifications. Current characterized errata are available on request.

• Any code names and other code names featured are used internally within Intel to identify products that are in development and not

yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names in

advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the

user

• Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate

performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may

affect actual performance.

• Intel, Intel® Streaming SIMD Extensions (Intel® SSE), Intel® Advanced Vector Extensions (Intel® AVX), Intel® Parallel Building

Blocks (Intel® PBB), Intel® Threading Building Blocks (Intel® TBB), Intel® Array Building Blocks (Intel® ArBB), Intel® Math Kernel

Library (Intel® MKL), Intel® Integrated Performance Primitives (Intel® IPP), Intel® Cilk Plus and the Intel logo are trademarks of Intel

Corporation in the United States and other countries.

• *Other names and brands may be claimed as the property of others.

• Copyright ©2010 Intel Corporation.

11/29/2010 2

33

Software and Services Group
Optimization

Notice

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options that optimize for
instruction sets that are available in both Intel® and non-Intel microprocessors (for example SIMD instruction sets), but
do not optimize equally for non-Intel microprocessors. In addition, certain compiler options for Intel compilers,
including some that are not specific to Intel micro-architecture, are reserved for Intel microprocessors. For a detailed
description of Intel compiler options, including the instruction sets and specific microprocessors they implicate, please
refer to the “Intel® Compiler User and Reference Guides” under “Compiler Options”. Many library routines that are
part of Intel® compiler products are more highly optimized for Intel microprocessors than for other microprocessors.
While the compilers and libraries in Intel® compiler products offer optimizations for both Intel and Intel-compatible
microprocessors, depending on the options you select, your code and other factors, you likely will get extra
performance on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to the same degree
for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and
Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best performance on
Intel® and non-Intel microprocessors, Intel recommends that you evaluate other compilers and libraries to determine
which best meet your requirements. We hope to win your business by striving to offer the best performance of any
compiler or library; please let us know if you find we do not.

Notice revision #20101101

11/29/2010 3

44

Software and Services Group
Optimization

Notice

Agenda

• Intel® Array Building Blocks

• VM Description and Rationale

• Programming Model

• Basic API Functionality and Examples

• Operations in the VM

• Runtime API

• Usage Models

• Finding Out More

55

Software and Services Group
Optimization

Notice

Intel® Array Building Blocks

Key Points:

• Productivity

• Performance

• Portability

CPU CPU plus
Manycore

SSE 4

AVX Hybrid
Processor

Single source

dense<T, 3>

dense<T>

dense<T, 2> dense<array<…>> nested<T>

66

Software and Services Group
Optimization

Notice

VM Rationale - Implementation

C++ SDK
headers

Shared library boundary C89 API

Intel® ArBB Implementation

Python SDK

77

Software and Services Group
Optimization

Notice

VM Rationale - Usage

• Deterministic semantics

• Powerful vectorization

• Powerful fusion optimizations

• Distributed memory support

• Dynamic code generation

– Includes SSE2, SSE3, SSSE3, AVX, Intel MIC architecture

H
L
O

1

H
L
O

2

H
L
O

3

88

Software and Services Group
Optimization

Notice

Programming Model – Serial Code

c = add<f32>(a, b);

d = mul<f32>(c, b);

+

*

99

Software and Services Group
Optimization

Notice

Programming Model - Parallelism

+

*

… +

…

+

*

+

* *

C = add<dense<f32>>(A, B);

D = mul<dense<f32>>(C, B);

1010

Software and Services Group
Optimization

Notice

Programming Model – Optimization

C = add<dense<f32>>(A, B);

D = mul<dense<f32>>(C, B);

+

*

… +

…

+

*

+

* *

1111

Software and Services Group
Optimization

Notice

Programming Model – Functions

c = add<f32>(a, b);

d = mul<f32>(c, b);

f

f

1212

Software and Services Group
Optimization

Notice

Programming Model – Maps

X = map(f, Y, Z) …fff f f f

1313

Software and Services Group
Optimization

Notice

Basic API Functionality

• Create types

– Scalar types

– Dense and nested container types

– Function types

• Create variables

– Global to all functions

– Local to a function

• Create functions and operations

1414

Software and Services Group
Optimization

Notice

API Conventions

• All types are enumerations or opaque types

• All functions return an error code & description

• No assumptions about heap

• Only basic C functionality used

1515

Software and Services Group
Optimization

Notice

C API Example: Dot-product

arbb_type_t dense_1d_f32;
arbb_get_dense_type(context, &dense_1d_f32, arbb_f32, 1, NULL);

arbb_type_t fn_type;
arbb_get_function_type(context, &fn_type, 1, {arbb_f32},

2, {dense_1d_f32, dense_1d_f32}, NULL);

arbb_function_t function;
arbb_begin_function(context, &function, fn_type, “dot”, NULL);
arbb_variable_t a, b, c, t;
arbb_get_parameter(function, &a, 0 /* input */, 0, NULL);
arbb_get_parameter(function, &b, 0 /* input */, 1, NULL);
arbb_get_parameter(function, &c, 1 /* output */, 0, NULL);

arbb_create_local(function, &t, dense_1d_f32, “t”, NULL);

arbb_op(function, arbb_op_mul, {t}, {a, b}, NULL);

arbb_op(function, arbb_op_reduce_add, {c}, {t}, NULL);
arbb_end_function(function, NULL);

1616

Software and Services Group
Optimization

Notice

Textual IR Example: Dot-product

function _dot(out $f32 _c, in $dense<$f32> _a, in $dense<$f32> _b)
{
local $dense<$f32> _t;
_t = mul<$dense<$f32>>(_a, _b);
_c = reduce_add<$f32>(_t);

}

Syntax not final.

1717

Software and Services Group
Optimization

Notice

Operations

1818

Software and Services Group
Optimization

Notice

Element-wise operations

• Any scalar operations are allowed

• Source container shapes must match

– Destination container size is irrelevant

• Any (but not all) sources can be scalars

1919

Software and Services Group
Optimization

Notice

Collective operations

+ *   & | ^

2020

Software and Services Group
Optimization

Notice

Control flow operations

?

?

2121

Software and Services Group
Optimization

Notice

Miscellaneous operations

• Obtain attributes of values

– E.g. container dimensions

• Reorder containers

– E.g. replace a row, scatter, gather, …

• System operations

– E.g. obtain current time

2222

Software and Services Group
Optimization

Notice

Runtime API

• Read/write global scalars

• Bind containers to host data

• Map container data into host address space

• Compile functions

• Execute functions

• Manage
asynchrony

2323

Software and Services Group
Optimization

Notice

VM Usage Models:
Present Future

Executable

Runtime API
Invocations

Runtime
codegen

Bytecode/IR

Runtime API
Invocations

Runtime
codegen

Bytecode/IR

Compile time
API

Invocations

Static
codegen

Bytecode/IR

Compile time
API Invocations

Runtime API
Invocations

Runtime
codegen

static dynamic

2424

Software and Services Group
Optimization

Notice

Finding Out More

• VM Specification to be published soon

• Fully implemented, see “arbb_vmapi.h”

• Download Beta 1, give it a try!

http://software.intel.com/en-us/articles/intel-array-building-blocks/

