CERN-IT-GT

WLCG Worldwide LHC Computing Grid

Markus Schulz

August 2010 Openlab Summer Students

Overview

- Background
- The Infrastructure
- Usage
- Evolution

Not covered today

- Grid Computing Technology
- gLite Middleware

Distribution of All CERN Users by Nation of Institute on 6 January 2009

One of our data generators: ATLAS

Flow in and out of the center

Data and Algorithms

- HEP data are organized as *Events* (particle collisions)
- Simulation, Reconstruction and Analysis programs process "one Event at a time"
 - Events are fairly independent→ Trivial parallel processing
- Event processing programs
 are composed of a number of
 Algorithms selecting and
 transforming "raw" Event
 data into
 "processed" (reconstructed)
 Event data and statistics

pp collisions at 14 TeV at 1034 cm⁻²s⁻¹

A very difficult environment ...

How to extract this: (Higgs → 4 muons)

From this:

With:

20 proton-proton collisions overlap

And this repeats every 25 ns...

The LHC Computing Challenge

- Signal/Noise: 10⁻¹³ (10⁻⁹ offline)
- Data volume
 - High rate * large number of channels * 4 experiments
 - → 15 Peta Bytes of new data each year
- Compute power
 - Event complexity * Nb. events * thousands users
 - → 200 k of (today's) fastest CPUs
 - → 45 PB of disk storage
- Worldwide analysis & funding
 - Computing funding locally in major regions & countries
 - Efficient analysis everywhere
 - → GRID technology

What is Grid Middleware?

- For today:
- The glue that creates the illusion that a distributed infrastructure is a single resource
- If it works, no one will notice it

Tier 0 – Tier 1 – Tier 2 the Service Hierarchy

History

- 1999 MONARC project
 - First LHC computing architecture hierarchical distributed model
- 2000 growing interest in grid technology
 - HEP community main driver in launching the DataGrid project
- 2001-2004 EU DataGrid project
 - middleware & testbed for an operational grid
- 2002-2005 LHC Computing Grid LCG
 - deploying the results of DataGrid to provide a production facility for LHC experiments
- 2004-2006 EU EGEE project phase 1
 - starts from the LCG grid
 - shared production infrastructure
 - expanding to other communities and sciences
- 2006-2008 EU EGEE project phase 2
 - expanding to other communities and sciences
 - Scale and stability
 - Interoperations/Interoperability
- 2008-2010 EU EGEE project phase 3
 - More communities
 - Efficient operations
 - Less central coordination
- 2010 201x EGI and EMI
 - Sustainable infrastructures based on National Grid Infrastructures
 - Decoupling of middleware development and infrastructure

Evolution of (W)LCG

Production Grids

- WLCG relies on a *production quality* infrastructure
 - Requires standards of:
 - Availability/reliability
 - Performance
 - Manageability
 - Is used 365 days a year ... (has been for several years!)
 - Tier 1s must store the data for at least the lifetime of the LHC ~20 years
 - Not passive requires active migration to newer media
- Vital that we build a fault-tolerant and reliable system
 - That can deal with individual sites being down and recover

What is needed to make it work?

- Apart from Middleware
- Apart from Computer Centers

- Management
- Fabric
- Networking
- Security
- Monitoring
- User Support
- Problem Tracking
- Accounting
- Service support
- SLAs.....
- But now on a global scale
 - Respecting the sites' independence
 - Linking the different infrastructures
 - NDGF, EGEE (EGI), OSG

Worldwide LCG Organisation

The EGEE Infrastructure

Test-beds & Services

Production Service

Pre-production service

Certification test-beds (SA3)

Training infrastructure (NA4)

Support Structures & Processes

Operations Coordination Centre

Regional Operations Centres

Global Grid User Support

EGEE Network Operations Centre (SA2)

Operational Security Coordination Team

Training activities (NA3)

Security & Policy Groups

Joint Security Policy Group

Grid Security Vulnerability Group

EuGridPMA (& IGTF)

Operations Advisory Group (+NA4)

Operations Infrastructure

- Regional Operations Centers (ROCs)
 - Little central coordination, policy driven
 - CIC portal as a common information point
- Connect to users and admins
 - Problem tracking tools
 - GGUS (Global Grid User Support)
 - Web interface, mail interface
 - Handles ~1000 tickets every month
 - Interfaced to local tools -→ acceptance
- Accounting: APEL
 - Central DB + Portal (UK & Spain)
 - Interfaces for other systems: DGAS, OSG, NDGF

- Daily WLCG Operations Meetings
 - 30 minutes
 - Follow up on current problems
- Every two weeks WLCG T1 Service Coordination meeting
 - Operational Planning
 - Incidents followup
- Detailed monitoring of the SLAs.

- GGUS: Web based portal
 - about 1000 tickets per months
 - Grid security aware
 - Interfaces to regional/national support structures

Reliabilities

- This is not the full picture:
- Experiment-specific measures give complementary view
- Need to be used together with some understanding of underlying issues

Availability metrics - GridView

Overall Service Availability for site CERNPR : Daily Report

Individual Service Availability for site CERNPR : Daily Report

Service Instance Availability for site CERNPR : Daily Report Site Services

CE: ox100 zero.ch

Monitoring to Improve Reliability

- Monitoring
- Metrics
- Workshops
- Data challenges
- Experience

Site Fabric

Site Fabric

- Systematic problem analysis
- Priority from software developers

Monitoring Data Flow

GridMap Visualization

Drilldown into region by clicking on the title

Link: http://gridmap.cern.ch

Grid Monitoring

The critical activity to achieve reliability

Monitoring

ActiveMQ

- Availability/Reliability monitoring
 - SAM tests and infrastructure
 - Now migrated to NAGIOS based system, decentralized
 - Visualization: GridView, GridMap, dashboards......
 - Solid foundation: Monitoring Infrastructure

Security & Policy

Collaborative policy development

- Many policy aspects are collaborative works; e.g.:
- Joint Security Policy Group
- Certification Authorities
 - EUGridPMA → IGTF, etc.
- Grid Acceptable Use Policy (AUP)
 - common, general and simple AUP
 - for all VO members using many Grid infrastructures
 - EGEE, OSG, SEE-GRID, DEISA, national Grids...
- Incident Handling and Response
 - defines basic communications paths
 - defines requirements (MUSTs) for IR
 - not to replace or interfere with local response plans

Security & Policy Groups

Joint Security Policy Group

EuGridPMA (& IGTF)

Grid Security Vulnerability Group

Operations Advisory Group (+NA4)

Security groups

- Joint Security Policy Group:
 - Joint with WLCG, OSG, and others
 - Focus on policy issues
 - Strong input to e-IRG
- EUGridPMA
 - Pan-European trust federation of CAs
 - Included in IGTF (and was model for it)
 - Success: most grid projects now subscribe to the IGTF
- Grid Security Vulnerability Group
 - Looking at how to manage vulnerabilities
 - Risk analysis is fundamental
 - Hard to balance between openness and giving away insider info
- Operational Security Coordination Team
 - Main day-to-day operational security work
 - Incident response and follow up
 - Members in all ROCs and sites
 - Frequent tests (Security Challenges)

The new European Network Backbone

- LCG working group with Tier-1s and national/ regional research network organisations
- New GÉANT 2 research network backbone
 - → Strong correlation with major European LHC centres (Swiss PoP at CERN)
 - → Core links are fibre
- Two 622 Mbps circuits to Israel

Usage

Global Multi Science Infrastructure mission critical for many communities

>340sites
48 countries
>170,000 CPUs
>25 PetaBytes disk
>10,000 users
>170 communities
>500,000 jobs/day

CERN, IT Department

Grid Activity – delivered CPU

- Distribution of work across
 Tier0/Tier1/Tier 2 really
 illustrates the importance of the
 grid system
 - Tier 2 contribution is ~ 50%;
 - >85% is external to CERN

Data Transfers

EGEE Achievements - Applications

- >270 VOs from several scientific domains
 - Astronomy & Astrophysics
 - Civil Protection
 - Computational Chemistry
 - Comp. Fluid Dynamics
 - Computer Science/Tools
 - Condensed Matter Physics
 - Earth Sciences
 - Fusion
 - High Energy Physics
 - Life Sciences
- Further applications under evaluation

Applications have moved from testing to routine and daily usage

EGEE Registered Collaborating Projects

geographical or thematic coverage

Applications

improved services for academia, industry and the public

Support Actions

key complementary functions

BioinfoGRID

Future

European e-Infrastructure

- European Data Grid (EDG)
 - Explore concepts in a testbed
- Enabling Grid for E-sciencE (EGEE)
 - Moving from prototype to production
- European Grid Infrastructure (EGI)
 - Routine usage of a sustainable e-infrastructure

What is an e-Infrastructure?

- Resources linked by high speed networks
 - Compute, Storage, Instruments, ...
- Controlled access to shared resources
 - Authentication, Authorisation, Accounting, ...
- Dependable services for others to use
 - Driven by availability and reliability metrics
- Services that are there for the long-term
 - Supporting experiments lasting decades

Moving from EGEE to EGI

- What is different?
 - EGEE did 'everything'
 - EGI focuses just on infrastructure operations
- What is the same?
 - Running a 24/7 production quality infrastructure
 - Providing a support framework for the users
 - Collaboration to drive European DCI forward

What other changes?

- Virtualization (fabric)
- Integration with Clouds
 - Commercial
 - Community
- T0-T1-T2 connection reaches a new quality
 - Less hierarchical system
- Addressing Interoperability
- The end of Moore's law?
- •

- WLCG delivers the computing resources needed by the experiments
- The infrastructure grew exponentially for several years
 - While reducing support effort and improving reliability
- The main challenges are:
 - Scaling
 - Changes in technology
 - Organizational changes

