CLHEP 2.0.4.7 Reference Documentation
   
CLHEP Home Page     CLHEP Documentation     CLHEP Bug Reports

RotationC.cc

Go to the documentation of this file.
00001 // -*- C++ -*-
00002 // ---------------------------------------------------------------------------
00003 //
00004 // This file is a part of the CLHEP - a Class Library for High Energy Physics.
00005 //
00006 // This is the implementation of methods of the HepRotation class which
00007 // were introduced when ZOOM PhysicsVectors was merged in, which involve
00008 // correcting user-supplied data which is supposed to form a Rotation, or
00009 // rectifying a rotation matrix which may have drifted due to roundoff.
00010 //
00011 
00012 #ifdef GNUPRAGMA
00013 #pragma implementation
00014 #endif
00015 
00016 #include "CLHEP/Vector/defs.h"
00017 #include "CLHEP/Vector/Rotation.h"
00018 #include "CLHEP/Vector/ZMxpv.h"
00019 
00020 #include <cmath>
00021 
00022 namespace CLHEP  {
00023 
00024 // --------- Helper methods (private) for setting from 3 columns:
00025 
00026 bool HepRotation::setCols 
00027     ( const Hep3Vector & u1, const Hep3Vector & u2, const Hep3Vector & u3,
00028       double u1u2,
00029       Hep3Vector & v1, Hep3Vector & v2, Hep3Vector & v3 ) const {
00030 
00031   if ( (1-fabs(u1u2)) <= Hep4RotationInterface::tolerance ) {
00032     ZMthrowC (ZMxpvParallelCols(
00033       "All three cols supplied for a Rotation are parallel --"
00034         "\n    an arbitrary rotation will be returned"));
00035     setArbitrarily (u1, v1, v2, v3);
00036     return true;
00037   }
00038 
00039   v1 = u1;
00040   v2  = Hep3Vector(u2 - u1u2 * u1).unit();
00041   v3 = v1.cross(v2);
00042   if ( v3.dot(u3) >= 0 ) {
00043     return true;
00044   } else {
00045     return false;       // looks more like a reflection in this case!
00046   }
00047 
00048 } // HepRotation::setCols 
00049 
00050 void HepRotation::setArbitrarily (const Hep3Vector & colX, 
00051    Hep3Vector & v1, Hep3Vector & v2, Hep3Vector & v3) const {
00052 
00053   // We have all three col's parallel.  Warnings already been given;
00054   // this just supplies a result which is a valid rotation.
00055 
00056   v1 = colX.unit();
00057   v2 = v1.cross(Hep3Vector(0,0,1));
00058   if (v2.mag2() != 0) {
00059     v2 = v2.unit();
00060   } else {
00061     v2 = Hep3Vector(1,0,0);
00062   }
00063   v3 = v1.cross(v2);
00064 
00065   return;
00066 
00067 } // HepRotation::setArbitrarily 
00068 
00069 
00070 
00071 // ----------  Constructors and Assignment:
00072 
00073 // 3 orthogonal columns or rows
00074 
00075 HepRotation & HepRotation::set( const Hep3Vector & colX,
00076                                 const Hep3Vector & colY,
00077                                 const Hep3Vector & colZ ) {
00078   Hep3Vector ucolX = colX.unit();
00079   Hep3Vector ucolY = colY.unit();
00080   Hep3Vector ucolZ = colZ.unit();
00081 
00082   double u1u2 = ucolX.dot(ucolY);
00083   double f12  = fabs(u1u2);
00084   if ( f12 > Hep4RotationInterface::tolerance ) {
00085     ZMthrowC (ZMxpvNotOrthogonal(
00086       "col's X and Y supplied for Rotation are not close to orthogonal"));
00087   }
00088   double u1u3 = ucolX.dot(ucolZ);
00089   double f13  = fabs(u1u3);
00090   if ( f13 > Hep4RotationInterface::tolerance ) {
00091     ZMthrowC (ZMxpvNotOrthogonal(
00092       "col's X and Z supplied for Rotation are not close to orthogonal"));
00093   }
00094   double u2u3 = ucolY.dot(ucolZ);
00095   double f23  = fabs(u2u3);
00096   if ( f23 > Hep4RotationInterface::tolerance ) {
00097     ZMthrowC (ZMxpvNotOrthogonal(
00098       "col's Y and Z supplied for Rotation are not close to orthogonal"));
00099   }
00100 
00101   Hep3Vector v1, v2, v3;
00102   bool isRotation;
00103   if ( (f12 <= f13) && (f12 <= f23) ) {
00104     isRotation = setCols ( ucolX, ucolY, ucolZ, u1u2, v1, v2, v3 );
00105     if ( !isRotation ) {
00106       ZMthrowC (ZMxpvImproperRotation(
00107       "col's X Y and Z supplied form closer to a reflection than a Rotation "
00108         "\n     col Z is set to col X cross col Y"));
00109     }
00110   } else if ( f13 <= f23 ) {
00111     isRotation = setCols ( ucolZ, ucolX, ucolY, u1u3, v3, v1, v2 );
00112     if ( !isRotation ) {
00113       ZMthrowC (ZMxpvImproperRotation(
00114       "col's X Y and Z supplied form closer to a reflection than a Rotation "
00115         "\n     col Y is set to col Z cross col X"));
00116     }
00117   } else {
00118     isRotation = setCols ( ucolY, ucolZ, ucolX, u2u3, v2, v3, v1 );
00119     if ( !isRotation ) {
00120       ZMthrowC (ZMxpvImproperRotation(
00121       "col's X Y and Z supplied form closer to a reflection than a Rotation "
00122         "\n     col X is set to col Y cross col Z"));
00123     }
00124   }
00125 
00126   rxx = v1.x();  ryx = v1.y(); rzx = v1.z();
00127   rxy = v2.x();  ryy = v2.y(); rzy = v2.z();
00128   rxz = v3.x();  ryz = v3.y(); rzz = v3.z();
00129 
00130   return *this;
00131 
00132 }  // HepRotation::set(colX, colY, colZ)
00133 
00134 HepRotation::HepRotation ( const Hep3Vector & colX,
00135                            const Hep3Vector & colY,
00136                            const Hep3Vector & colZ ) 
00137 {
00138   set (colX, colY, colZ);
00139 }
00140 
00141 HepRotation & HepRotation::setRows( const Hep3Vector & rowX,
00142                                     const Hep3Vector & rowY,
00143                                     const Hep3Vector & rowZ ) {
00144   set (rowX, rowY, rowZ);
00145   invert();
00146   return *this;
00147 }
00148 
00149 
00150 // ------- Rectify a near-rotation
00151 
00152 void HepRotation::rectify() {
00153   // Assuming the representation of this is close to a true Rotation,
00154   // but may have drifted due to round-off error from many operations,
00155   // this forms an "exact" orthonormal matrix for the rotation again.
00156 
00157   // The first step is to average with the transposed inverse.  This
00158   // will correct for small errors such as those occuring when decomposing
00159   // a LorentzTransformation.  Then we take the bull by the horns and
00160   // formally extract the axis and delta (assuming the Rotation were true)
00161   // and re-setting the rotation according to those.
00162 
00163   double det =  rxx * ryy * rzz +
00164                    rxy * ryz * rzx +
00165                    rxz * ryx * rzy -
00166                    rxx * ryz * rzy -
00167                    rxy * ryx * rzz -
00168                    rxz * ryy * rzx   ;
00169   if (det <= 0) {
00170     ZMthrowA(ZMxpvImproperRotation(
00171         "Attempt to rectify a Rotation with determinant <= 0\n"));
00172     return;
00173   }
00174   double di = 1.0 / det;
00175 
00176   // xx, xy, ... are components of inverse matrix:
00177   double xx = (ryy * rzz - ryz * rzy) * di;
00178   double xy = (rzy * rxz - rzz * rxy) * di;
00179   double xz = (rxy * ryz - rxz * ryy) * di;
00180   double yx = (ryz * rzx - ryx * rzz) * di;
00181   double yy = (rzz * rxx - rzx * rxz) * di;
00182   double yz = (rxz * ryx - rxx * ryz) * di;
00183   double zx = (ryx * rzy - ryy * rzx) * di;
00184   double zy = (rzx * rxy - rzy * rxx) * di;
00185   double zz = (rxx * ryy - rxy * ryx) * di;
00186 
00187   // Now average with the TRANSPOSE of that:
00188   rxx = .5*(rxx + xx);
00189   rxy = .5*(rxy + yx);
00190   rxz = .5*(rxz + zx);
00191   ryx = .5*(ryx + xy);
00192   ryy = .5*(ryy + yy);
00193   ryz = .5*(ryz + zy);
00194   rzx = .5*(rzx + xz);
00195   rzy = .5*(rzy + yz);
00196   rzz = .5*(rzz + zz);
00197 
00198   // Now force feed this improved rotation
00199   double del = delta();
00200   Hep3Vector u = axis();
00201   u = u.unit(); // Because if the rotation is inexact, then the
00202                 // axis() returned will not have length 1!
00203   set(u, del);
00204 
00205 } // rectify()
00206 
00207 }  // namespace CLHEP
00208 

Generated on Thu Jul 1 22:02:31 2010 for CLHEP by  doxygen 1.4.7