Photon+Jets+MET Analysis Work in progress, under construction

Mailing list archive SUSY Photon Channel Meetings SVN SUSY Working Group HN

Introduction

This page provides useful information on the single photon + jets + Etmiss analysis being performed within the SUSYWG (2013).

In the context of GGM models, ATLAS has searched for SUSY production in the diphoton+MET, γ+l+MET and γ+bb+MET channels, covering the bino-like, wino-like and higgsino admixture (μ<0), respectively. The search described here is intended to fill the missing scenario in the GGM phase space.

Motivation

In models of General Gauge Mediation, the LSP is the gravitino, and the NLSP can be a neutralino admixture of higgsino and bino eigenstates. (This scenario is typical for |μ|≈M1.) This specific admixture means, provided μ>0, the NLSP decays to γ + gravitino or to Z + gravitino. With the Z boson decaying hadronically, this resulting signature is γ+jets+MET.

StrongProduction gl to chi10 general.png
General decay chain of GGM neutralino in strong production events.

Documents

Document COM note INT note
Supporting Note SVN CDS SVN CDS

Contact Information

Editors Persons

The editors are Martin Tripiana and Francisco Alonso . Please feel free to contact them with any questions, comments, or concerns.

Mailing Lists

Please be certain to sign up for the relevant mailing lists for this analysis:

NB: be sure to remove the SPAMNOT from the address!

People

Martin Tripiana (UNLP)
Francisco Alonso (UNLP)
Tere Dova (UNLP)

(Please add/remove your name a piacere)

References and Bibliography

Experimental References

Theoretical references

Event & Object Selection

Event Preselection
LAr Hole Smart Veto
Remove events only if the estimated energy missed in the LAr hole contributes significantly to MET using the variable: Ep_formula.png
Events are rejected if Ep > E_min and Ep > frac*MET where E_min and frac are two parameters and MET is the transverse missing energy. Default configuration is E_min=10GeV and frac=0.1.
Check FakeMetEstimator for details.
GRL [Data only] data12_8TeV.periodAllYear_DetStatus-v58-pro14-01_DQDefects-00-00-33_PHYS_StandardGRL_All_Good.xml
Bad/Corrupted events Following DP recommendations:
* veto LAr noise burst and data corruption.
    if (larError==2) { // reject event (D3PD)} 

* veto Tile corrupted events.
    if (tileError==2) { // reject event (D3PD)} 

* veto Tile corrupted events passing other quality criteria in periods G-J.
TTileTripReader::checkEvent(unsigned int run, unsigned int lbn, unsigned int event)
Instructions and more details can be found here: TileTripReader

* veto incomplete events: In 2012 data-taking the TTC restart was developed to recover certain detector busy conditions without a run-restart. In the lumi-block after a TTC restart there can be events with incomplete events (where some detector information is missing from the event).
    if ((coreFlags&0x40000) != 0) { // This is an incomplete event remove from analysis } 
Trigger The current trigger configuration in data / MC12 is SMK: 325, L1PSK: 142, HLTPSK: 266.

Among all the single photon triggers available, this analysis makes use of
EF_g120_loose
which has been the lowest-pt unprescaled trigger during the whole 2012.

Warning, important Please check whether this problem is pertinent to your data.
Vertex The reconstructed primary vertex of the event has more than 4 associated tracks. D3PD : vx_nTracks[0]>4 .
Hot Tile
[Data]
Only for periods B1-B2
Remove events where a jet points to the eta,phi region close to LBC28 (eta = -0.15 & phi = 2.7), if this jet has its highest energy fraction in the Tile second layer (Layer-ID=13) and this fraction is large (Elayer/Ejet>0.6). As described in HowToCleanJets2012
MET cleaning BadJet Veto Reject events where at least one AntiKt4LCTopo jet (after overlap removal) with pT > 20 GeV is characterized as BAD by the ``Looser'' (aka LooseMinus aka Very Loose) criteria (see below).

Cosmic Veto The event has at least one selected muon with a |z0| ≥ 1 mm or |d0| ≥ 0.2 mm, where the values are calculated with respect to the primary vertex.


Physics Object Baseline Selection
Photons
Reference Link
Overlap Removal See OverlapRemoval below.
γ-ID Tight selection. Recomputed at D3PD level with PhotonIDTool , tune tight(2012)

OBS: TightARegammaPID::PhotonTightAR not usable yet (until next AODFix)
Ambiguity Resolver (AR) : To reduce electron fake.

bool isPhotonAR = true;
if ((ph_isEM & 0x800000) != 0) isPhotonAR = false;
Kinematics ET > 125 GeV
|ηcluster| < 2.37 [excluding the crack region]
ObjectQuality OQ has no bits in BADCLUSPHOTON set : MaskedCellCore(bit 10), MissingFEBCellCore(bit 5), MissingFEBCellEdgeS1(bit 7), MissingFEBCellEdgeS2(bit 8), DeadHVS1S2S3Core(bit 1), DeadHVS1S2S3Edge(bit 2), BadS1Core(bit 15);

if ((ph_OQ& 34214)==0) { 
   cout << "this is a good OQ photon" << endl;
} 
PhotonCleaning Remove clusters with large amount of energy from bad cells and very narrow fake candidates (ph_OQ LArCleaning bit (27)), and out-of-time candidates (ph_OQ OutTime bit (26)).


if( !( (ph_OQ&134217728)!=0 && (ph_reta>0.98||ph_rphi>1.0||(ph_OQ&67108864)!=0) ) ){
   cout << "this a good photon wrt the new photon cleaning" << endl;
} 

Warning, important After this cleaning, some bad clusters may remain. Photons with LArCleaning > 0.8 are checked by hand at the end of the analysis (event displays + LAr data quality info).
if((ph_OQ&134217728)!=0) 
cout << "this photon has a LArCleaning > 0.8" << endl; 
cout << "This can be a bad photon, especially if reta/rphi are close to 1 or if the timing is large (~ 10ns)" << endl; 
}
Isolation ph_topoEtcone40_corrected < 5 GeV

Corrections applied for out-of-core signal energy leakage and for UE/pileup, using the CaloIsolationCorrections tool. (See below).
Overlap Removal See OverlapRemoval below.
Electrons
Reference Link
Algorithm egammaParameters::AuthorElectron ( el_author==1 or 3)
e-ID mediumPP . Recomputed at D3PD level using macro provided as part of the egammaAnalysisUtils package.
Kinematics ET > 25 GeV (calculated using EM cluster energy and matched track direction)
|ηcluster| < 2.47 [including the crack region]
ObjectQuality OQ has no bits in BADCLUSELECTRON set : MaskedCellCore(bit 10), MissingFEBCellCore(bit 5), MissingFEBCellEdgeS1(bit 7), MissingFEBCellEdgeS2(bit 8), DeadHVS1S2S3Core(bit 1), DeadHVS1S2S3Edge(bit 2);

and cluster is not out of time (bit 26): |t| ≤ (10 + 2/|Eclus|) ns.

if ((el_OQ&1446)==0 && (el_OQ&egammaPID::OutTime)==0) { 
   cout << "this is a good electron" << endl;
} 
Isolation el_topoEtcone20_corrected < 5 GeV

Corrections applied for out-of-core signal energy leakage and for UE/pileup, using the CaloIsolationCorrections tool. (See below).
Overlap Removal See OverlapRemoval below.
Muons
μ-ID Loose Combined or Segment-Tagged Staco Muons following the recommendations of the MCP group.
In D3PDs: Select author either 6 or 7.
Kinematics pT > 10 GeV, |η| < 2.4
ID Hits - ( ! expectBLayerHit) || (numberOfBLayerHits > 0)
- Number of pixel hits+number of crossed dead pixel sensors > 0 (was 1 in 2011).
- Number of SCT hits+number of crossed dead SCT sensors > 4 (was 5 in 2011).
- Number of pixel holes + number of SCT holes < 3.
- TRT extension : If the ID track is within the TRT acceptance a TRT extension is required:
Let n = nTRThits + nTRTouts, where nTRThits (nTRTouts) denote the number of TRT hits (outliers) of the muon track, then:
Case 1: 0.1 < |η| < 1.9. Require n > 5 and nTRTouts < 0.9 n.
Case 2: |η|≤ 0.1 or |η| ≥ 1.9. If n > 5, then require nTRTouts < 0.9 n.

mu_expectBLayerHit
mu_nBLHits
mu_nPixHits
mu_nPixelDeadSensors
mu_nSCTHits
mu_nSCTDeadSensors
mu_nPixHoles
mu_nSCTHoles
mu_nTRTHits
mu_nTRTOutliers

NB: Certain cuts have been loosened compared to 2011 without increasing the misidentification rate (see page 8 of this talk).
Cosmic Cut |d0| < 1 mm (where d0 is relative to the primary vertex, mu_staco_d0_exPV) and |Z0 - Zvtx| < 1 cm (at the beamline, mu_staco_z0_exPV)
Jets
Algorithm AntiKt4LCTopo. See JetCollections
Jet Cleaning Reject jets which are characterized as BAD according to the Looser (aka LooseMinus aka Very Loose) criteria definition
Kinematics pT > 20 GeV and |η| < 2.5
Pileup removal Require |!JetVertexFraction| > 0.75 (wrt the primary vertex). Jets w/o associated tracks have JVF=-1 and pass this requirement.


Final γ+jets+MET selection
  SIGNAL CUT   SR1 SR2 SR3
Single photon selection [SP] SC1 photon pT ( > ) 125 GeV 125 GeV 300 GeV
SC2 photon isolation (topoIso20_corrected < ) 4 GeV 4 GeV 4 GeV
SC3 2nd photon veto No trailing baseline photon with pT > 75 GeV
Lepton Veto [LV] SC4   No signal electron in the event, fulfilling the above criteria.
SC5   No signal muon in the event, fulfilling the above criteria.
Missing ET [MET] SC6 MET_RefFinal_et ( > ) 150 GeV 150 GeV 150 GeV
N-Jet Selection [NJS] SC7 N(jets) >= 2 , fulfilling the above criteria and pT > 80,80 GeV 80,80 GeV 40,20 GeV
Total hadronic transv. energy [HT] SC8 HT ( > ) 800 GeV 1.2 TeV 800 GeV
Topological variables [TV] SC8 Δφ(jet, MET) ( > ) 0.4 0.4 0.4
SC9 Δφ(ph, leading jet) ( < ) - - 2.0
SC10 RT2 ( < ) 0.75 0.65 -

Selection Variables Definition

  • HT : Total hadronic transverse energy

It is defined as the ET sum of all good jets in the event, according to the criteria above.

  • RT2 :

It is defined as the ratio of the two leading jet ET sum to HT.

  • Δφ(jet, MET) :

It is defined as the minimum Δφ distance from the selected photon to the two leading jets.



Corrections [Scaling + Smearing + Reweighting]

What Apply to data? Apply to MC? Tool info
Event Reweighting
b-tag scale factor no yes CalibrationDataInterface-00-01-02 with the calibration file for MC11b final release.
Weight each good jet by results of either getScaleFactor or getInefficiencyScaleFactor , depending on whether or not the jet was tagged. Multiply all jet weights within an event.
Pileup Reweighting no yes PileupReweighting-00-02-05 (see this Twiki for details.)

After adding the root files with the histograms, use:
 m_tPileUp->SetUnrepresentedDataAction(2);  // "just carry on"
 m_tPileUp->UsePeriodConfig("MC12a");
 m_tPileUp->SetDataScaleFactors(1./1.11); //mandatory : to put *before* the call to AddLumiCalcFile(...)
 m_tPileUp->AddConfigFile(m_mcRootFileName);
 m_tPileUp->AddConfigFile(m_mcRootFileName);
 m_tPileUp->Initialize();

Reweight each event with: m_tPU->GetCombinedWeight(RunNumber, mc_channel_number, averageIntPerXing);

A good description of minimum bias vertex multiplicity (with ≥2 tracks) with the Pythia8 tuning used in MC12 is obtained by scaling the <μ> in MC by 11±0.03 (details)
MC generator weights
MC@ NLO samples no yes use mcevt_weight[0] (in D3PDs: ((*mcevt_weight)[0])[0])
Photon related
Energy scale yes no Use egammaAnalysisUtils-00-03-24
  EnergyRescaler er;
  er.useDefaultCalibConstants("2012");
  new_E = scale.applyEnergyCorrectionMeV (ph_cl_eta, ph_cl_phi, ph_E, ph_Et, SYST_FLAG, PHO_TYPE);  //energies in MeV
PHO_TYPE set to 'UNCONVERTED_PHOTON', 'CONVERTED_PHOTON' accordingly
SYST_FLAG is 0=NOMINAL, 1=ERR_DOWN, 2=ERR_UP (one sigma variations).
Reference
Energy resolution no yes Use egammaAnalysisUtils-00-03-24
   EnergyRescaler er;
   er.useDefaultCalibConstants("2012");
   smear.SetRandomSeed (EventNumber + 1001 * iph);
   double smearedEnergy = oldEnergy * er.getSmearingCorrectionMeV(cl_eta,  oldEnergy, SYST_FLAG, CT_FLAG); 
iph is the index of the photon within its collection (before any selections).
SYST_FLAG is 0 for nominal scale, 1 or 2 for 1-sigma variations.
CT_FLAG should be false for all MC12 physics samples (produced with zero constant term for the LAr EM resolution).
Reference
ID Efficiencies no yes use the tag FudgeMCTool-00-00-16 to apply the FudgeFactors with pre-selection 13. (EGamma recommendation)
Electron related
Energy & direction yes yes
//4-momentum variables
if ((nSCT + nPix) < 4){ // basically TRT stand-alone tracks
   eta  = el_cl_eta [el_index];
   phi  = el_cl_phi [el_index];
   Et   = el_cl_et [el_index];
   E    = el_cl_E [el_index];
}
else{    
   eta = el_tracketa [el_index];
   phi = el_trackphi [el_index];
   Et   = el_cl_E [el_index] / cosh(el_tracketa [el_index]); 
   E    = el_cl_E [el_index]; 
} 

//**WARNING**  Use always cluster (eta,phi) for calorimeter related cuts/bins (crack removal, efficiency binning, OTX maps, energy scale corrections)
   eta  = el_cl_eta [el_index];
   phi  = el_cl_phi [el_index];

Reference
Energy scale yes no Use egammaAnalysisUtils-00-03-24
  EnergyRescaler er;
  er.useDefaultCalibConstants("2012");
  new_E = scale.applyEnergyCorrectionMeV (e_cl_eta, e_cl_phi, e_E, e_Et, SYST_FLAG, "ELECTRON");  //energies in MeV
SYST_FLAG is 0=NOMINAL, 1=ERR_DOWN, 2=ERR_UP (one sigma variations).
Reference
Energy resolution no yes Use egammaAnalysisUtils-00-03-24
   EnergyRescaler er;
   er.useDefaultCalibConstants("2012");
   smear.SetRandomSeed (EventNumber + 1001 * iele);
   double smearedEnergy = oldEnergy * er.getSmearingCorrectionMeV(cl_eta,  oldEnergy, SYST_FLAG, CT_FLAG); 
iele is the index of the electron within its collection (before any selections).
SYST_FLAG is 0 for nominal scale, 1 or 2 for 1-sigma variations.
CT_FLAG should be false for all MC12 physics samples (produced with zero constant term for the LAr EM resolution).
Reference
ID Efficiencies no yes egammaSFclass, egammaAnalysisUtils-00-03-24
 egamamSFclass egammaSF;
 egammaSF.scaleFactor (el_cl_eta, el_pt, 6, 0, 8, True);   
// rel  = 8  : release 17.2 for 2012 data and G4 FullSim MC12a, "ICHEP2012 recommendations"
// set = 6  : Medium++
Reference
Reco Efficiencies no yes egammaSFclass, egammaAnalysisUtils-00-03-24
 egamamSFclass egammaSF;
 egammaSF.scaleFactor (el_cl_eta, el_pt, 4, 0, 8, True);   
// rel  = 8  : release 17.2 for 2012 data and G4 FullSim MC12a, "ICHEP2012 recommendations"
// set = 4  : Reco + track quality requirements
Reference
Muon related
pT smearing no yes MuonMomentumCorrections-00-06-03, (SmearingClass)
  MuonSmear::SmearingClass mcp_smear ("Data12", "staco", "q_pT", "Rel17.2_preliminary", MCP_DIR);
  mcp_smear.UseScale(1);   //do muon scale correction as well 
  mcp_smear.SetSeed (EventNumber, imu);
  if muon is combined:
    mcp_smear.Event (mu_MS_pt, mu_ID_pt, mu_pt, mu_eta, mu_charge);
    mu_pt = mcp_smear.pTCB();
    if mcp_smear.ChargeFlipCB() < 0: mu_charge *= -1;
  else:
    mcp_smear.Event (mu_pt, mu_eta, "ID", mu_charge);
    mu_pt = mcp_smear.pTCB();
    if mcp_smear.ChargeFlipID() < 0: mu_charge *= -1;
imu is the index of the muon within its collection (before selections).
MCP_DIR is the directory containing the MuonMomentumCorrections data files.

Reference
ID Efficiency (SF) no yes Using MuonEfficiencyCorrections-02-00-03+
std::string  directory="";   //directory with the SF file. Empty string to use files provided with the package, 
std::string file="SF.txt" //name of the file
std::string unit("MeV"); // for MeV; for GeV use "GeV" 
Analysis::AnalysisMuonConfigurableScaleFactors::Configuration config=Analysis::AnalysisMuonConfigurableScaleFactors::Default
//Default is the configuration for SFs which are not binned per run or per period
//If the SFs are provided per Period (as for 2011 SFs), the configuration can be PerPeriod (to get the SF per single period) 
//   or AverageOverPeriods (to get an average over the periods)
//If the SFs are provided per Run (as for 2012 SFs), the configuration can be PerRun (to get the SF per single period) 
//   or AverageOverRuns (to get an average over the runs)

Analysis::AnalysisMuonConfigurableScaleFactors m_MCPsf(directory,file,unit,config);
m_MCPsf.Initialise();

// getting the scale factors...

// With the Default, AverageOverPeriods, AverageOverRuns configuration
m_MCPsf.scaleFactor(p); // scale factor of a muon with fourmomentum (TLorentzVector) p 

// With the PerRun configuration
m_MCPsf.scaleFactor(p,run); // scale factor of a muon with fourmomentum (TLorentzVector) p for a given (int) run 

// With the PerPeriod configuration
m_MCPsf.scaleFactor(p,period); // scale factor of a muon with fourmomentum (TLorentzVector) p for a given (TString) period 


Reference
Jet related
LAr hole veto yes periods E-H Veto events with any selected jets in the LAr hole with pT above threshold.
LAr hole is defined by -0.1 < eta < 1.5 and -0.9 < phi < -0.1.
pT threshold is 40 GeV in Monte Carlo.
In data, threshold is 40 GeV * (1-BCH_CORR_JET) / (1-BCH_CORR_CELL).

Overlap removal strategy

  • no $\gamma$ with DR(e,$\gamma$) < 0.01
  • no jet with DR(jet,$\gamma$/e) < 0.2
  • no $\gamma$/e with 0.2 < DR(jet,$\gamma$/e) < 0.4
  • no $\mu$ with DR(jet,$\mu$) < 0.4

Cut flow tables

MC

  • Benchmark : mc12_8TeV.173417.Herwigpp_UEEE3CTEQ6L1_GGM_gl_neut_800_600.merge.NTUP_SUSY.e1577_s1499_s1504_r3658_r3549_p1328 [ No rw . No pT/PV smearing ]

La Plata

All - - -   - - -   - - -
  SR1   SR2   SR3
  N Events Abs. Eff. Rel. Eff.   N Events Abs. Eff. Rel. Eff.   N Events Abs. Eff. Rel. Eff.


DATA

  • Benchmark : group.phys-susy.data12_8TeV.periodG.physics_Egamma.PhysCont.NTUP_SUSYSKIM.repro14_v01_p1328_p1329 PeriodG in runQuery

La Plata

All - - -   - - -   - - -
  SR1   SR2   SR3
  N Events Abs. Eff. Rel. Eff.   N Events Abs. Eff. Rel. Eff.   N Events Abs. Eff. Rel. Eff.

SusyD3PDs

  • The SusyD3PD ntuples generated by the SUSYD3PDMaker package are centrally produced since the beginning of the 2011 data taking period.

2013 Production

For both data and MC, D3PDs are produced with the AtlasPhysics-17.2.2.1.2 cache, SUSYD3PDMaker-00-12-10

Data Samples

  • production tag for 2012 data (data12_8TeV): p1328_p1329
Containers and number of files and events are listed in ContNumEvts12

  • a private production of skimmed D3PDs (passing EF_g120_loose + some variables' slimming) is available on the grid
    • latest tag is 'UNLP7' (May 2013)
    • they all follow this naming scheme:
user.falonso.group.phys-susy.data12_8TeV.[PERIOD].physics_[STREAM].PhysCont.NTUP_SUSYSKIM.repro14_v01_p1328_p1329.[TAG]

  • a private production of skimmed D3PDs (passing EF_e60_medium1 + some variables' slimming) is available on the grid
    • latest tag is 'UNLP7_ELTRIG' (May 2013)
    • they all follow this naming scheme:
user.tripiana.group.phys-susy.data12_8TeV.[PERIOD].physics_[STREAM].PhysCont.NTUP_SUSYSKIM.repro14_v01_p1328_p1329.[TAG]

Period Stream NTUP_SUSYSKIM + UNLP skimming UNLPv5
periodL Egamma 21769898 1461794 1461794
periodA_MISSING Egamma   0 10570
periodA Egamma 22890166 1373819 1363249
periodB_MISSING Egamma   0 4303
periodB Egamma 130536070 8411253 8435089
periodC Egamma 35596072 2498118 2498118
periodD_MISSING Egamma 82713192 0 5538
periodD Egamma 82713192 5510734 5479224
periodE Egamma 64962986 4349921 4349921
periodG Egamma 32267341 2180483 2180483
periodH EGamma 38008165 2534550 2484961
periodI Egamma 26026444 1730449 1730449
periodJ Egamma 67149689 4226709 4519263

Data Periods


Period Run range Luminosity [pb-1] runQuery details
Total 200804 - 215643 20344.37  
A 200804 - 201556 795.91 link
B 202660 - 205113 5113.61 link
C 206248 - 207397 1409.06 link
D 207447 - 209025 3297.54 link
E 209074 - 210308 2534.11 link
G 211522 - 212272 1279.54 link
H 212619 - 213359 1449.04 link
I 213431 - 213819 1018.45 link
J 213900 - 215091 2605.48 link
L 215414 - 215643 841.634 link

Integrated luminosity used in this analysis. For each data taking period the run range and the integrated luminosity are given.


MC Datasets

  • production tag for 2012 MC (mc12_8TeV): p1032

  • private skimmed D3PDs (passing EF_g120_loose + some variables' slimming)

Signal . GGM bino-higgsino grid

In models of General Gauge Mediation, a higgsino-like neutralino decays to Z+gravitino or h+gravitino. We consider a GGM model where the lightest neutralino is a mixture of bino and higgsino, and we fix μ to be positive so that the branching ratio to Z boson id greater than the branching ratio to the lowest-mass supersymmetric Higgs boson.

With these considerations, the final state signature contains (most of the times) one photon, jets and missing energy.

mass spectrum.png
Representative mass spectra for GGM signal samples (mgl=800GeV, mχ10=600GeV)

The SLHA files are defined using SUSPECT 2.41, SDECAY 1.3b, and HDECAY 3.4. We set the following global parameters for all signal points:

  • M2 = 2.5 TeV
  • tan β = 1.5
  • cτ < 1 mm
  • MA = 2 TeV
  • mh = 126 GeV

  • BR(γG) = 0.51
  • BR(ZG) = 0.48
  • BR(hG) = 0.01



  • Details of first gluino-neutralino grid proposal can be checked in this page


Decay chains

These are the dominant decay chains for this channel. The relative contribution in different regions of phase space have driven the optimization of the signal regions for this analysis.

StrongProduction gl to chi10.png StrongProduction gl to chi20.png StrongProduction gl to chi30.png
2-body gluino decay to chi_10 2-body gluino decay to chi_20 2-body gluino decay to chi_30
StrongProduction gl to chi1pm.png GlDecays relCont.png
3-body gluino decay to chi_1_+- Relative contribution to total BR in phase space.  


The particles expected in the final state are highlighted in red.

Background

W+γ
mc12_8TeV.146430.AlpgenJimmy_AUET2CTEQ6L1_WgammaNp0.merge.NTUP_SUSY.e1260_s1469_s1470_r3542_r3549_p1328  
mc12_8TeV.146431.AlpgenJimmy_AUET2CTEQ6L1_WgammaNp1.merge.NTUP_SUSY.e1260_s1469_s1470_r3542_r3549_p1328  
mc12_8TeV.146432.AlpgenJimmy_AUET2CTEQ6L1_WgammaNp2.merge.NTUP_SUSY.e1260_s1469_s1470_r3752_r3549_p1328  
mc12_8TeV.146433.AlpgenJimmy_AUET2CTEQ6L1_WgammaNp3.merge.NTUP_SUSY.e1293_s1469_s1470_r3542_r3549_p1328  
mc12_8TeV.146434.AlpgenJimmy_AUET2CTEQ6L1_WgammaNp4.merge.NTUP_SUSY.e1293_s1469_s1470_r3542_r3549_p1328  
mc12_8TeV.146435.AlpgenJimmy_AUET2CTEQ6L1_WgammaNp5.merge.NTUP_SUSY.e1293_s1469_s1470_r3542_r3549_p1328  
Z(ll)+γ
mc12_8TeV.158728.Sherpa_CT10_ZeegammaPt70.merge.NTUP_SUSY.e1518_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.158729.Sherpa_CT10_ZmumugammaPt70.merge.NTUP_SUSY.e1518_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.158730.Sherpa_CT10_ZtautaugammaPt70.merge.NTUP_SUSY.e1518_s1499_s1504_r3658_r3549_p1328  
Z(νν)+γ
mc12_8TeV.126022.Sherpa_CT10_nunugammaPt70.merge.NTUP_SUSY.e1374_s1499_s1504_r3658_r3549_p1328  
W(eν)+jets
mc12_8TeV.107680.AlpgenJimmy_AUET2CTEQ6L1_WenuNp0.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107681.AlpgenJimmy_AUET2CTEQ6L1_WenuNp1.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107682.AlpgenJimmy_AUET2CTEQ6L1_WenuNp2.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107683.AlpgenJimmy_AUET2CTEQ6L1_WenuNp3.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107684.AlpgenJimmy_AUET2CTEQ6L1_WenuNp4.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107685.AlpgenJimmy_AUET2CTEQ6L1_WenuNp5.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
W(μν)+jets
mc12_8TeV.107690.AlpgenJimmy_AUET2CTEQ6L1_WmunuNp0.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107691.AlpgenJimmy_AUET2CTEQ6L1_WmunuNp1.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107692.AlpgenJimmy_AUET2CTEQ6L1_WmunuNp2.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107693.AlpgenJimmy_AUET2CTEQ6L1_WmunuNp3.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107694.AlpgenJimmy_AUET2CTEQ6L1_WmunuNp4.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107695.AlpgenJimmy_AUET2CTEQ6L1_WmunuNp5.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
W(τν)+jets
mc12_8TeV.107700.AlpgenJimmy_AUET2CTEQ6L1_WtaunuNp0.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107701.AlpgenJimmy_AUET2CTEQ6L1_WtaunuNp1.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107702.AlpgenJimmy_AUET2CTEQ6L1_WtaunuNp2.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107703.AlpgenJimmy_AUET2CTEQ6L1_WtaunuNp3.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107704.AlpgenJimmy_AUET2CTEQ6L1_WtaunuNp4.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107705.AlpgenJimmy_AUET2CTEQ6L1_WtaunuNp5.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
Z(ee)+jets
mc12_8TeV.107650.AlpgenJimmy_AUET2CTEQ6L1_ZeeNp0.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107651.AlpgenJimmy_AUET2CTEQ6L1_ZeeNp1.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107652.AlpgenJimmy_AUET2CTEQ6L1_ZeeNp2.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107653.AlpgenJimmy_AUET2CTEQ6L1_ZeeNp3.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107654.AlpgenJimmy_AUET2CTEQ6L1_ZeeNp4.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107655.AlpgenJimmy_AUET2CTEQ6L1_ZeeNp5.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
Z(μμ)+jets
mc12_8TeV.107660.AlpgenJimmy_AUET2CTEQ6L1_ZmumuNp0.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107661.AlpgenJimmy_AUET2CTEQ6L1_ZmumuNp1.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107662.AlpgenJimmy_AUET2CTEQ6L1_ZmumuNp2.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107663.AlpgenJimmy_AUET2CTEQ6L1_ZmumuNp3.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107664.AlpgenJimmy_AUET2CTEQ6L1_ZmumuNp4.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107665.AlpgenJimmy_AUET2CTEQ6L1_ZmumuNp5.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
Z(ττ)+jets
mc12_8TeV.107670.AlpgenJimmy_AUET2CTEQ6L1_ZtautauNp0.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107671.AlpgenJimmy_AUET2CTEQ6L1_ZtautauNp1.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107672.AlpgenJimmy_AUET2CTEQ6L1_ZtautauNp2.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107673.AlpgenJimmy_AUET2CTEQ6L1_ZtautauNp3.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107674.AlpgenJimmy_AUET2CTEQ6L1_ZtautauNp4.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107675.AlpgenJimmy_AUET2CTEQ6L1_ZtautauNp5.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
Z(νν)+jets
mc12_8TeV.156803.AlpgenJimmy_AUET2_CTEQ6L1_ZnunuNp0_filt1jet.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156804.AlpgenJimmy_AUET2_CTEQ6L1_ZnunuNp1_filt1jet.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156809.AlpgenJimmy_AUET2_CTEQ6L1_ZnunuNp2_filt1jet.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156814.AlpgenJimmy_AUET2_CTEQ6L1_ZnunuNp3_filt1jet.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156819.AlpgenJimmy_AUET2_CTEQ6L1_ZnunuNp4_filt1jet.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156824.AlpgenJimmy_AUET2_CTEQ6L1_ZnunuNp5_filt1jet.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
Z(ee)+jets
mc12_8TeV.107650.AlpgenJimmy_AUET2CTEQ6L1_ZeeNp0.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107651.AlpgenJimmy_AUET2CTEQ6L1_ZeeNp1.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107652.AlpgenJimmy_AUET2CTEQ6L1_ZeeNp2.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107653.AlpgenJimmy_AUET2CTEQ6L1_ZeeNp3.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107654.AlpgenJimmy_AUET2CTEQ6L1_ZeeNp4.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107655.AlpgenJimmy_AUET2CTEQ6L1_ZeeNp5.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
Z(μμ)+jets
mc12_8TeV.107660.AlpgenJimmy_AUET2CTEQ6L1_ZmumuNp0.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107661.AlpgenJimmy_AUET2CTEQ6L1_ZmumuNp1.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107662.AlpgenJimmy_AUET2CTEQ6L1_ZmumuNp2.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107663.AlpgenJimmy_AUET2CTEQ6L1_ZmumuNp3.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107664.AlpgenJimmy_AUET2CTEQ6L1_ZmumuNp4.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107665.AlpgenJimmy_AUET2CTEQ6L1_ZmumuNp5.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
Z(ττ)+jets
mc12_8TeV.107670.AlpgenJimmy_AUET2CTEQ6L1_ZtautauNp0.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107671.AlpgenJimmy_AUET2CTEQ6L1_ZtautauNp1.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107672.AlpgenJimmy_AUET2CTEQ6L1_ZtautauNp2.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107673.AlpgenJimmy_AUET2CTEQ6L1_ZtautauNp3.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107674.AlpgenJimmy_AUET2CTEQ6L1_ZtautauNp4.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.107675.AlpgenJimmy_AUET2CTEQ6L1_ZtautauNp5.merge.NTUP_SUSY.e1571_s1499_s1504_r3658_r3549_p1328  
QCD γ+jets
mc12_8TeV.156839.AlpgenJimmy_AUET2_CTEQ6L1_GamNp1_ph140.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156840.AlpgenJimmy_AUET2_CTEQ6L1_GamNp1_ph280.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156841.AlpgenJimmy_AUET2_CTEQ6L1_GamNp1_ph35.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156842.AlpgenJimmy_AUET2_CTEQ6L1_GamNp1_ph500.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156843.AlpgenJimmy_AUET2_CTEQ6L1_GamNp1_ph70.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156844.AlpgenJimmy_AUET2_CTEQ6L1_GamNp2_ph140.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156845.AlpgenJimmy_AUET2_CTEQ6L1_GamNp2_ph280.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156846.AlpgenJimmy_AUET2_CTEQ6L1_GamNp2_ph35.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156847.AlpgenJimmy_AUET2_CTEQ6L1_GamNp2_ph500.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156848.AlpgenJimmy_AUET2_CTEQ6L1_GamNp2_ph70.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156849.AlpgenJimmy_AUET2_CTEQ6L1_GamNp3_ph140.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156850.AlpgenJimmy_AUET2_CTEQ6L1_GamNp3_ph280.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156851.AlpgenJimmy_AUET2_CTEQ6L1_GamNp3_ph35.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156852.AlpgenJimmy_AUET2_CTEQ6L1_GamNp3_ph500.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156853.AlpgenJimmy_AUET2_CTEQ6L1_GamNp3_ph70.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156854.AlpgenJimmy_AUET2_CTEQ6L1_GamNp4_ph140.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156855.AlpgenJimmy_AUET2_CTEQ6L1_GamNp4_ph280.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156856.AlpgenJimmy_AUET2_CTEQ6L1_GamNp4_ph35.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156857.AlpgenJimmy_AUET2_CTEQ6L1_GamNp4_ph500.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156858.AlpgenJimmy_AUET2_CTEQ6L1_GamNp4_ph70.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156859.AlpgenJimmy_AUET2_CTEQ6L1_GamNp5_ph140.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156860.AlpgenJimmy_AUET2_CTEQ6L1_GamNp5_ph280.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156861.AlpgenJimmy_AUET2_CTEQ6L1_GamNp5_ph35.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156862.AlpgenJimmy_AUET2_CTEQ6L1_GamNp5_ph500.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.156863.AlpgenJimmy_AUET2_CTEQ6L1_GamNp5_ph70.merge.NTUP_SUSY.e1601_s1499_s1504_r3658_r3549_p1328  
QCD multi-jets
mc12_8TeV.147910.Pythia8_AU2CT10_jetjet_JZ0W.merge.NTUP_SUSY.e1126_s1469_s1470_r3542_r3549_p1328  
mc12_8TeV.147911.Pythia8_AU2CT10_jetjet_JZ1W.merge.NTUP_SUSY.e1126_s1469_s1470_r3542_r3549_p1328  
mc12_8TeV.147912.Pythia8_AU2CT10_jetjet_JZ2W.merge.NTUP_SUSY.e1126_s1469_s1470_r3542_r3549_p1328  
mc12_8TeV.147913.Pythia8_AU2CT10_jetjet_JZ3W.merge.NTUP_SUSY.e1126_s1469_s1470_r3542_r3549_p1328  
mc12_8TeV.147914.Pythia8_AU2CT10_jetjet_JZ4W.merge.NTUP_SUSY.e1126_s1469_s1470_r3542_r3549_p1328  
mc12_8TeV.147915.Pythia8_AU2CT10_jetjet_JZ5W.merge.NTUP_SUSY.e1126_s1469_s1470_r3542_r3549_p1328  
mc12_8TeV.147916.Pythia8_AU2CT10_jetjet_JZ6W.merge.NTUP_SUSY.e1126_s1469_s1470_r3542_r3549_p1328  
mc12_8TeV.147917.Pythia8_AU2CT10_jetjet_JZ7W.merge.NTUP_SUSY.e1126_s1469_s1470_r3542_r3549_p1328  
ttbar & ttbar+γ
mc12_8TeV.117050.PowhegPythia_P2011C_ttbar.merge.NTUP_SUSY.e1727_a188_a171_r3549_p1328  
mc12_8TeV.164439.MadGraphPythia_AUET2BCTEQ6L1_ttbargammaPt80_noAllHad.merge.NTUP_SUSY.e1660_s1581_s1586_r3658_r3549_p1328  
mc12_8TeV.105200.McAtNloJimmy_CT10_ttbar_LeptonFilter.merge.NTUP_SUSY.e1513_s1499_s1504_r3945_r3549_p1328 xcheck
mc12_8TeV.105860.PowhegJimmy_AUET2CT10_ttbar_LeptonFilter.merge.NTUP_SUSY.e1576_a159_a171_r3549_p1328 xcheck
mc12_8TeV.105861.PowhegPythia_AUET2BCT10_ttbar_LeptonFilter.merge.NTUP_SUSY.e1317_a159_a165_r3549_p1328 xcheck
Dibosons
mc12_8TeV.105985.Herwig_AUET2CTEQ6L1_WW.merge.NTUP_SUSY.e1576_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.105986.Herwig_AUET2CTEQ6L1_ZZ.merge.NTUP_SUSY.e1576_s1499_s1504_r3658_r3549_p1328  
mc12_8TeV.105987.Herwig_AUET2CTEQ6L1_WZ.merge.NTUP_SUSY.e1576_s1499_s1504_r3658_r3549_p1328  

Event Generation Details (cross sections, etc)

The details of the PhotonMetSusy8TeV datasets (e.g. xsections, k-factors and filter efficiencies) are given this file.

The SUSY::CrossSectionDB class (provided inside the SUSYTools package) is used to decode the cross-sections' values in the text file. For a how-to example please see the README file there.


Major updates:
-- MartinTripiana - 12-Jun-2012

Responsible MartinTripiana
Review Never reviewed

Topic attachments
I Attachment History Action Size Date Who Comment
PNGpng GlDecays_relCont.png r1 manage 127.2 K 2013-05-01 - 13:50 MartinTripiana Relative contribution of the several decay modes across the phase space grid.
PNGpng StrongProduction_gl_to_chi10.png r1 manage 45.8 K 2013-05-01 - 13:58 MartinTripiana 2-body direct NLSP production
Unknown file formateps StrongProduction_gl_to_chi10_general.eps r1 manage 135.3 K 2013-04-30 - 16:55 MartinTripiana General decay chain
PDFpdf StrongProduction_gl_to_chi10_general.pdf r1 manage 11.2 K 2013-04-30 - 16:55 MartinTripiana General decay chain
PNGpng StrongProduction_gl_to_chi10_general.png r1 manage 34.1 K 2013-04-30 - 16:54 MartinTripiana General decay chain
PNGpng StrongProduction_gl_to_chi1pm.png r1 manage 40.3 K 2013-05-01 - 14:03 MartinTripiana 2-body gluino decay to chi_1^pm
PNGpng StrongProduction_gl_to_chi20.png r1 manage 100.1 K 2013-05-01 - 13:59 MartinTripiana 2-body gluino decay to chi_2^0
PNGpng StrongProduction_gl_to_chi30.png r1 manage 112.4 K 2013-05-01 - 14:00 MartinTripiana 2-body gluino decay to chi_3^0
Texttxt cross_sections_GGM_7TeV.txt r1 manage 93.0 K 2012-06-12 - 18:39 MartinTripiana Event generation details for GGM samples in MC11 (7TeV)
PNGpng mass_spectrum.png r1 manage 14.7 K 2013-05-02 - 12:10 MartinTripiana Representative mass spectra for GGM signal samples (gl_neut_800_600).
Texttxt susy_crosssections.txt r1 manage 34.9 K 2012-06-21 - 16:28 MartinTripiana Event generation details for SUSY samples in MC11 (7TeV)
Texttxt susy_crosssections_8TeV.txt r2 r1 manage 65.2 K 2013-04-30 - 17:10 MartinTripiana Event generation details for SUSY samples in MC12 (8TeV)
Edit | Attach | Watch | Print version | History: r33 < r32 < r31 < r30 < r29 | Backlinks | Raw View | WYSIWYG | More topic actions
Topic revision: r33 - 2013-05-07 - MartinTripiana
 
    • Cern Search Icon Cern Search
    • TWiki Search Icon TWiki Search
    • Google Search Icon Google Search

    Main All webs login

This site is powered by the TWiki collaboration platform Powered by PerlCopyright &© 2008-2024 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
or Ideas, requests, problems regarding TWiki? use Discourse or Send feedback